
 13.10.2014

HTML5 and Digital Signatures

Signature Creation Service 1.1

Nov 22, 2017

 SPECIFICATION 2 (23)
Signature Creation Service 1.1

22.11.2017

Väestörekisterikeskus

DOCUMENT MANAGEMENT

Prepared by Antti Partanen / VRK <antti.partanen@vrk.fi>

Inspected by

Approved by

VERSION CONTROL
version no. what has been done date/person

1,0 Final version (no changes to 0.7 version) 17.2.2015/PL

1.0.1 Added
 https usage as requirement
 server certificate requirements
 SCS module for javascript (example)
 clarifications for selector.akis and selector.issuers format
 removed selector.validate parameter
 added requirement for SCS to check whether certificate is valid

or not
 removed localhost.fineid.fi as dnsName parameter in SCS

server certificate (compared to previous 1.0.1 version)
 protocol version is still the same: 1.0

30.6.2015/PL

1.1 Added:
 support for http based access dropped completely
 separation of authentication and signing purpose
 authentication challenge to be used for authentication purpose
 keyalgorithms array to selector functionality
 cms signature type and cms signature profile
 protocol version 1.1
 support signature request size up to 100MB (was 2MB)
 minor editorial corrections

4.6.2017/PL

21.11.2017/AP

 SPECIFICATION 3 (23)
Signature Creation Service 1.1

22.11.2017

Väestörekisterikeskus

Table of contents

1 Introduction ... 4

1.1 Definitions and Acronyms ... 4

1.2 References ... 4

2 Signature Creation Service (SCS) .. 5

2.1 Requirements ... 5

2.2 Message sequence diagram .. 7

2.3 Server certificate ... 10

2.4 CORS preflight check ... 11

2.5 Version check ... 11

2.5.1 Request .. 11

2.5.2 Response ... 12

2.6 Signature creation .. 13

2.6.1 Request (POST) .. 13

2.6.2 Request (GET) ... 15

2.6.3 Response ... 16

2.7 Reason codes ... 17

3 Security considerations ... 19

3.1 Authentication ... 19

3.2 Confidentiality, Integrity, Privacy .. 19

3.3 Local server socket ... 19

3.4 End user permission ... 19

3.5 Identifying origin ... 19

3.6 Non-repudiation signatures .. 19

3.7 Nonce ... 20

3.8 Certificate types .. 20

3.9 Malware .. 20

3.10 Multi-user enviroments ... 21

3.11 Browser policies ... 21

4 SCS Profiles .. 22

4.1 Base profile ... 22

4.2 RSA signature profile .. 22

4.3 ECDSA profile .. 23

 SPECIFICATION 4 (23)
Signature Creation Service 1.1

22.11.2017

Väestörekisterikeskus

HTML5 AND DIGITAL SIGNATURES

1 Introduction

This specification describes a method to generate digital signatures in HTML5
applications [HTML5] that are executed in User Agents, i.e., web browsers. The
specification utilizes the Cross-Origin Resource Sharing (CORS) specification [CORS]
that enables an HTML5 application downloaded from Site A to communicate with a
service located in Site B using Javascript's XMLHttpRequest mechanisms [XHR], for
instance. The communication protocol uses HTTP protocol and the information elements
are transferred using JSON format [JSON].

The HTML5 application makes a signature request by sending the data that needs to be
signed to the Signature Creation Service (SCS). Upon receiving the request, the SCS
displays a certificate selection dialog to the end user, who will select the certificate that
will be used to generate the digital signature. If required, the end user enters the PIN
code for accessing the private key to generate the signature. Once the signature is
created, the SCS sends the signature along with the certificate chain and other needed
information to the HTML5 application. Upon receiving the digital signature, the HTML5
application uses it according to its specifications.

1.1 Definitions and Acronyms

CMS Cryptographic Message Syntax

CORS Cross-Origin Resource Sharing

CRL Certificate Revocation List

JSON JavaScript Object Notation

OCSP Online Certificate Status Protocol

OS Operating System

PKCS Public-Key Cryptography Standards

SCS Signature Creation Service

1.2 References

[CMS] Cryptographic Message Syntax (CMS), September 2009,
http://www.ietf.org/rfc/rfc5652.txt

[CORS] Cross-Origin Resource Sharing, W3C Recommendation, January 16, 2014,
http://www.w3.org/TR/cors/

[ECDSA] Deterministic Usage of the Digital Signature Algorithm (DSA) and Elliptic
Curve Digital Signature Algorithm (ECDSA), August 2013,
http://www.ietf.org/rfc/rfc6979.txt

[HTML5] HTML5, W3C Candidate Recommendation, July 31, 2014,
http://www.w3.org/TR/html5/

 SPECIFICATION 5 (23)
Signature Creation Service 1.1

22.11.2017

Väestörekisterikeskus

[HTTP] Hypertext Transfer Protocol -- HTTP/1.1, June 1999,
https://www.ietf.org/rfc/rfc2616.txt

[JSON] JavaScript Object Notation Introduction, http://json.org

[XHR] XMLHttpRequest Level 1, W3C Working Draft, January 30, 2014,
http://www.w3.org/TR/XMLHttpRequest/

[PKCS1] Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography
Specifications Version 2.1, February 2003, http://www.ietf.org/rfc/rfc3447.txt

[PKIX] Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile, May 2008
https://www.ietf.org/rfc/rfc5280.txt

[HTTPS] HTTP over TLS, May 2000,
https://www.ietf.org/rfc/rfc2818.txt

2 Signature Creation Service (SCS)

The SCS functions as a simple web server that provides access to signature creation
functionality via HTTP/1.1 protocol [HTTP].

2.1 Requirements

The SCS SHALL support the following functionality:

 The SCS SHALL support https scheme and it MAY support http scheme for
browser access. The SCS SHALL generate a key pair, generate a server
certificate and import that certificate to device’s trusted certificate store. Additional
requirements can be found in chapter 2.3.

 The SCS SHALL support CORS [CORS]:

o Each HTTP response SHALL contain the Access-Control-Allow-
Origin header with value "*".

o When User Agent makes the CORS preflight request, i.e., the OPTIONS
request, the corresponding HTTP response SHALL contain the following
headers: Access-Control-Max-Age header with default value "3600",
Access-Control-Allow-Methods header with default value "GET,
POST", and Access-Control-Allow-Headers headers with default
value "Content-Type, Accept".

 The SCS SHALL process all HTTP requests.

 The SCS SHALL show certificate selection dialog for every signature creation
request it receives.

 The SCS SHALL process HTTP requests where the Origin header containing
https protocol in the URL. HTTP requests with Origin header containing http
protocol in the URL SHALL not be processed.

 SPECIFICATION 6 (23)
Signature Creation Service 1.1

22.11.2017

Väestörekisterikeskus

 The SCS SHALL show the content of the Origin header of the signature creation
request to the end user (so that end user is able to identify the origin of the
signature creation request). It MAY be included in the certificate selection dialog.

 The SCS SHALL have only one active signature creation request active at a time.
If another signature creation request is received, the SCS shall silently ignore the
request and send a response to the requesting HTML5 application that another
request is already active.

 The SCS SHALL respond to all incoming requests.

 The SCS SHALL be able to handle HTTP requests where content length is up to
100MB (=100*1024*1024 bytes). The SCS MAY be able to support larger HTTP
requests.

 The SCS SHALL be able categorize signature creation requests to be either in
signing purpose category or authentication purpose category. This categorization
SHALL be based on the capabilities of the end entity certificate, namely by
checking the KeyUsage and ExtendedKeyUsage extensions of the certificate. If
the end entity certificate can be used for authentication purposes, the SCS SHALL
allow only operations that are allowed for authentication purposes.

o An end entity certificate can be used for authentication purposes, if the
KeyUsage extension has the DigitalSignature bit set, or the
ExtendedKeyUsage extension has the ClientAuthentication OID present or
the ServerAuthentication OID present.

o An end entity certificate can be used for signing purposes, if the KeyUsage
extension has the NonRepudiation bit set. In particular, the end entity
certificate SHALL NOT have the authentication purposes key usages as
specified in previous paragraph.

NOTE: With FINEID profile, the end entity certificates that have the
DigitalSignature bit set in the KeyUsage extension can only be used for
authentication purposes. The end entity certificates that have the
NonRepudiation bit set in the KeyUsage extension can be used for
signing purposes.

 The client application SHALL be able to send the data that is to be signed for
signing purposes, i.e., the SCS will receive the full to-be-signed data, and
calculate the digest of this data itself.

 The client application SHALL be able to send a challenge request to be signed for
authentication purposes. The challenge request SHALL be in the following format:

challenge_request = origin | nonce

where

origin is the address of the web server from where the HTML5 application
application was downloaded from, i.e., origin SHALL be the same as the
content of the CORS’s Origin header (e.g., “https://vrk.fineid.fi”), and

 SPECIFICATION 7 (23)
Signature Creation Service 1.1

22.11.2017

Väestörekisterikeskus

nonce is an octet string that SHALL be random and at least 64 octets in
length.

The maximum length of the challenge_request SHALL be 1024 octets in length.

The SCS SHALL validate that the challenge request is in correct format.

 The client application SHALL be able to send the digest of the data that is to be
signed for signing, i.e., the client application will calculate the digest of the to-be-
signed data, and send it to the SCS.

 The client application SHALL NOT send the challenge request in digest format for
authentication purposes. The SCS SHALL not accept signing requests in the
digest format.

 The SCS MAY validate each end entity certificate (that is available on the device)
and its certificate chain. If SCS validates end entity certificates and finds out that
one expired, this end entity certificate is not shown to the end user as a selection
option.

NOTE: Even if the SCS validates end entity certificates, the server consuming
digital signatures generated by SCS must also validate the end entity
certificate and its corresponding certificate chain when checking the
signature.

 The SCS MAY pre-filter applicable certificate list (before they are shown to the
end user) and certificate filtering MAY be based on one or more values in end
user certificates:

o Key algorithm type,

o Issuer DN field,

o KeyUsage extension values, and/or

o AuthorityKeyIdentifier extension.

This way the HTML5 application is able to indicate to the SCS the acceptable end
user certificates.

2.2 Message sequence diagram

Below is an example message sequence diagram of signature generation for HTML5
applications and SCS functionality. This specification concentrates on the interface
between the browser and the SCS, namely steps 5, 6, 7, and 20. Moreover, the steps 5
and 6 are specified by the CORS specification. Steps from 8 to 19 are described for
completeness but the actual steps depend on the OS architecture.

 SPECIFICATION 8 (23)
Signature Creation Service 1.1

22.11.2017

Väestörekisterikeskus

1. The end user types the URL of the origin server to the browser.

2. The browser makes a request to the URL. It is recommended that the URL uses
https scheme.

3. The browser downloads the HTML5 application, which typically consists of several
HTTP requests being made by the browser to the origin server. If the HTML5
application is downloaded using secure connection, i.e., https scheme, the HTTP
requests to the SCS in step 5 and step 7 must be done over https scheme as well.
If the HTML5 application is downloaded using unsecure connection, i.e., plain http
scheme, the requests to the SCS in step 5 and step 7 must be done over http
scheme as well.

4. At one point, application logic of the HTML5 application requires that a digital
signature is needed.

5. The browser makes an OPTIONS request to the SCS to discover whether CORS
type requests are allowed. This request may have been done also earlier.

6. The SCS returns the CORS options allowing requests being made from the
current HTML5 application context (identified by Origin).

7. The HTML5 application makes a signature creation request.

8. The SCS queries local crypto API for all available end entity certificates.

9. The Crypto API returns all available end entity certificates.

 SPECIFICATION 9 (23)
Signature Creation Service 1.1

22.11.2017

Väestörekisterikeskus

10. The SCS pre-filters the end entity certificate list if signature creation request
contained filters (selectors based on issuer name, authority key identifier or
required key usage parameters). Additionally, the SCS may locally validate the
end entity certificates, and filter out the ones that are not valid.

11. The SCS presents the end user with a list of (pre-filtered) end entity certificate list.

12. The end user selects one of the listed certificates.

13. The selected certificate is returned to the SCS.

14. The SCS checks the selected certificate whether it belongs to the signing
purposes category or to the authentication purposes category. If the certificate
belongs to the authentication purposes category, the signature creation request
must in the form of challenge request. If it is not, the SCS will show a notification
the end user that the signature creation request is not acceptable, and stops
processing the request.

15. The SCS initiates the digital signature generation with the private key associated
with the selected certificate and with given signature parameters received in the
signature creation request.

16. Crypto API requests end user to give authorization to the usage of the selected
private key.

17. End user enters the authorization data (e.g., PIN code).

18. Authorization data is returned to the Crypto API. If it was correct, the crypto API
generates the signature.

19. Signature is returned to the SCS.

20. The SCS generates the signature creation response (with the signature, signature
algorithm, and the certificate chain of the selected end entity certificate) and
returns it to the HTML5 application.

21. The HTML5 application processes the signature including validating the certificate
chain of the used end entity certificate (e.g., validity and revocation status). The
validation can also be done by the origin server (not depicted here).

Variations possibilities:

 After step 4, the HTML5 application may scan through the https ports that are
listed in Base profile (section 4.1), and automatically detect the port that is being
used by the SCS.

 Before showing the end user the certificate list for certificate selection, the SCS
could show a notification what is being signed, i.e., show the actual data that is
being signed. However, if data is not textual (e.g., XML signature element, or
plain binary data), the end user might get confused by this notification.

 SPECIFICATION 10 (23)
Signature Creation Service 1.1

22.11.2017

Väestörekisterikeskus

2.3 Server certificate

In order for SCS to use https based scheme to communicate with browsers, it must
generate a local key pair and a server certificate that needs to be imported to the devices
trusted certificate store. The browser that wishes to use SCS must then use that trusted
certificate store when validating server certificates.

Upon installation of the SCS to the target device, it SHALL generate two key pairs, one
for the local root certificate that is going to be used sign the server certificate. After the
certificates have been generated, the SCS SHALL delete the key pair of the root
certificate, and store the key pair of the server certificate securely. The certificate chain,
i.e., the root certificate and the server certificate SHALL be imported to the trusted
certificate store of the target environment, or any other certificate store that the web
browsers in the device are using.

The key pairs and the certificates have the following requirements:

 The key pairs SHALL be at least 2048 bits in the case of RSA key pair.

 The server certificate SHALL have the following attributes:

o The SubjectDN parameter SHALL include CommonName attribute
containing “127.0.0.1”.

o The certificate SHALL contain SubjectAltName extension with at least
following attributes:

 extension is not critical,

 dNSName: “localhost”, and

 iPAddress: “127.0.0.1”.

o The certificate SHALL contain KeyUsage extension with following
attributes:

 extension is critical,

 digitalSignature key usage, and

 keyEncipherment key usage.

o The certificate SHALL contain ExtendedKeyUsage extension with at least
following attributes:

 extension is not critical, and

 serverAuth key usage.

 Additionally, the certificate SHALL include any attributes that are specified in
[PKIX] and [HTTPS].

 SPECIFICATION 11 (23)
Signature Creation Service 1.1

22.11.2017

Väestörekisterikeskus

 The SCS SHALL generate a self-signed root certificate from which the server
certificate is issued. The root certificate SHALL contain attributes as specified in
[PKIX].

2.4 CORS preflight check

A browser that supports CORS will do a preflight check to see if a CORS request is
allowed to be sent to the SCS. This is done by sending an OPTIONS request to the web
server indicating the Origin of the requesting HTML5 application, and the allowed request
methods and headers. An example of such request is below.

OPTIONS /sign HTTP/1.1
Host: localhost:53952
Connection: keep-alive
Access-Control-Request-Method: POST
Origin: https://vrk.fineid.fi
User-Agent: Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like
 Gecko) Chrome/36.0.1985.143 Safari/537.36
Access-Control-Request-Headers: accept, content-type
Accept: */*
Referer: https://vrk.fineid.fi/scstest/
Accept-Encoding: gzip,deflate,sdch
Accept-Language: fi-FI,fi;q=0.8,en-US;q=0.6,en;q=0.4,fr;q=0.2

As a response, the SCS should send an HTTP response back with specified CORS
headers. An example of such a response is below.

HTTP/1.1 200 OK
Transfer-Encoding: chunked
Server: SCS 1.1 (2017-06-04)
Access-Control-Allow-Methods: GET, POST
Access-Control-Allow-Headers: Accept, Content-Type
Access-Control-Max-Age: 3600
Access-Control-Allow-Origin: *
Accept: application/json, */*
Date: Wed, 04 Jun 2017 07:38:01 GMT

2.5 Version check

2.5.1 Request

The HTML5 application checks the version of the SCS as well as discover the supported
mechanisms, and availability of the SCS by sending an XMLHttpRequest to the SCS.

HTTP parameters:

 HTTP-Method: GET

 Request-URI: /version

 Other HTTP parameters are filled in by the browser as specified by HTTP/1.1 and
CORS specifications.

 SPECIFICATION 12 (23)
Signature Creation Service 1.1

22.11.2017

Väestörekisterikeskus

Example HTTP request for version check.

GET /version HTTP/1.1
Host: localhost:53952
Connection: keep-alive
Accept: application/json, text/javascript, */*; q=0.01
Origin: https://vrk.fineid.fi
User-Agent: Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like
 Gecko) Chrome/36.0.1985.143 Safari/537.36
Referer: https://vrk.fineid.fi/scstest/
Accept-Encoding: gzip,deflate,sdch
Accept-Language: fi-FI,fi;q=0.8,en-US;q=0.6,en;q=0.4,fr;q=0.2

2.5.2 Response

The SCS responses to the version check request by sending version check response.

HTTP protocol parameters:

 Status-Code: 200

 Content-Type: application/json

 Other HTTP parameters are filled in by the browser as specified by HTTP/1.1 and
CORS specifications.

Version check response:

 version (string, mandatory): the version of the specification the SCS supports. For
this specification the value is "1.1".

 httpMethods (string, mandatory): the allowed HTTP methods for signature
creation request. The value for this specification is "GET, POST".

 contentTypes (string, mandatory): the supported data types supported by the
SCS. The value for this specification is "data, digest".

 signatureTypes (string, mandatory): the supported signature types supported by
the SCS. The value for this specification is "signature", or “signature, cms” if CMS
based signatures are supported by the SCS.

 selectorAvailable (boolean, mandatory): determines whether the SCS supports
the selector functionality. Possible values are "true" or "false".

 hashAlgorithms (string, mandatory): the supported hash algorithms supported by
the SCS. The value for this specification is "SHA1, SHA256, SHA384, SHA512".

The version check can be used by the client application to discover the service, and
validate that it is up and running.

HTTP/1.1 200 OK
Content-Length: 24
Content-Type: application/json

 SPECIFICATION 13 (23)
Signature Creation Service 1.1

22.11.2017

Väestörekisterikeskus

Server: SCS 1.1 (2017-06-04)
Access-Control-Allow-Origin: *
Accept: application/json, */*
Date: Wed, 04 Jun 2017 07:35:16 GMT

{
 "version": "1.1",
 "httpMethods": "GET, POST",
 "contentTypes": "data, digest",
 "signatureTypes": "signature",
 "selectorAvailable": true,
 "hashAlgorithms": "SHA1, SHA256, SHA384, SHA512"
}

2.6 Signature creation

2.6.1 Request (POST)

The HTML5 application makes a signature creation request by sending an
XMLHttpRequest to the SCS.

HTTP parameters:

 HTTP-Method: POST

 Request-URI: /sign

 Content-Type: application/json

 Other HTTP parameters are filled in by the browser as specified by HTTP/1.1 and
CORS specifications.

Signature creation request parameters:

 version (string, optional) contains the version of the SCS specification version
that the HTML5 application expects the SCS to support (which for this version is
"1.1").

 selector (object, optional) contains the certificate selector parameters

o issuers (array, optional) a list of acceptable issuers of the end user
certificate in string format (e.g., "CN=Trusted CA, OU=Unit,
O=Organization, C=FI") or in ASN1/DER encoded form as it is present in
the end user certificate (i.e., the issuer field in the end user certificate
[PKIX]) in which case the format is “base64:<ASN1/DER encoded issuer
field as it is present in the end user certificate in base64 encoded format>”.
Values are case sensitive. If specified, the end user certificate MUST
have one the listed issuers as the issuer.

It is recommended to pre-filter the certificate list using the “akis” array field
instead of the “issuers” array field.

o akis (array, optional) a list of authority key identifiers of acceptable issuers
in base64 format (key identifier is the content of the “keyIdentifier” field in

 SPECIFICATION 14 (23)
Signature Creation Service 1.1

22.11.2017

Väestörekisterikeskus

the AuthorityKeyIdentifier extension in the end user certificate as specified
in chapter 4.2.1.1 [PKIX], i.e., either the SHA-1 hash of the authority
certificate’s public key or 60 least significant bits of this hash preceded by
‘0100’ bits as specified in chapter 4.2.1.2 in [PKIX]). Values are case
sensitive. If specified, the end user certificate MUST have one of the listed
keyIdentifiers present in the AuthorityKeyIdentifier extension.

o keyusages (array, optional) a list of required keyusages as they are listed
in KeyUsage extension ("digitalSignature", "nonRepudiation",
"dataEncipherment", "decipherOnly", "encipherOnly", "keyAgreement",
"keyEncipherment", "keyCertSign", "crlSign"). Values are case insensitive.
If specified, the end user certificate MUST have all the listed key usages
present in the KeyUsage extension.

o keyalgorithms (array, optional) a list of acceptable key algorithm of the
end user certificate ("rsa", "ec"). Values are case insensitive. If specified,
the end user certificate, the end user certificate MUST have one of the
listed key algorithms as type of the subject public key in the end user
certificate.

 content (string, mandatory) contains the data to be signed that is base64
encoded.

 contentType (string, optional) specifies the type of the data field. Default is
"data". Options for type are "data" meaning that the data field contains the data
that should be signed, and "digest" meaning that the data field contains the digest
of the data that should be signed. Supported values are "data" and "digest".

o For authentication purposes, contentType must be “data”, “digest” is not
allowed.

o For signing purposes, contentType can be either “data” or “digest”.

 hashAlgorithm (string, optional) specifies the requested signature algorithm.
Default is "SHA256" indicating "SHA256withRSA" signature with RSA keys, and
"SHA256withECDSA" signature with EC keys. Supported values are "SHA1",
"SHA256", "SHA384", and "SHA512".

NOTE: If the contentType parameter value is "digest", the data parameter must
contain a digest calculated using the digest algorithm indicated in the
algorithm parameter.

 signatureType (string, optional) specifies the requested signature format. Default
is "signature" indicating plain raw signature (RSASSA-PKCS1-V1_5 for RSA keys
[PKCS1] and ECDSA for EC keys [ECDSA]). Supported values are "signature"
and “cms”. Value “cms” indicates that signature is based in CMS signature format
[CMS] where the signed data is included (attached) to the CMS signature when
contentType is “data” or signed data is excluded (detached) from the CMS
signature when contentType is “digest”. See CMS content profile in section 4.

Example HTTP POST request of signature creation request:

POST /sign HTTP/1.1

 SPECIFICATION 15 (23)
Signature Creation Service 1.1

22.11.2017

Väestörekisterikeskus

Host: localhost:53952
Connection: keep-alive
Content-Length: 155
Accept: application/json, text/javascript, */*; q=0.01
Origin: https://vrk.fineid.fi
User-Agent: Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like
 Gecko) Chrome/36.0.1985.143 Safari/537.36
Content-Type: application/json
Referer: https://vrk.fineid.fi/scstest/
Accept-Encoding: gzip,deflate,sdch
Accept-Language: fi-FI,fi;q=0.8,en-US;q=0.6,en;q=0.4,fr;q=0.2

{
 "version": "1.1",
 "selector": {
 "issuers: [
 "CN=VRK CA for Qualified Certificates, ..., C=FI",
 "CN=VRK CA for Qualified Certificates - G2, ..., C=FI"
],
 "keyusages": [
 "nonrepudiation"
]
 },
 "content": "VGhpcyBpcyB0aGUgZGF0YSB0byBiZSBzaWduZWQuLi4=",
 "contentType": "data",
 "hashAlgorithm": "SHA1",
 "signatureType": "signature"
}

2.6.2 Request (GET)

The HTML5 application may send the signature creation request also using GET method.
The HTTP protocol and request parameters are the same as with POST method with
following exceptions:

HTTP parameters:

 Request-Method: GET

Signature creation request parameters:

 selector functionality is not supported with GET method.

Example HTTP GET request of signature creation request:

GET /sign?content=VGhpc...QuLi4=&hashAlgorithm=SHA1&contentType=digest
HTTP/1.1
Host: localhost:53952
Connection: keep-alive
Accept: application/json, text/javascript, */*; q=0.01
Origin: https://vrk.fineid.fi
User-Agent: Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like
 Gecko) Chrome/36.0.1985.143 Safari/537.36
Referer: https://vrk.fineid.fi/scstest/
Accept-Encoding: gzip,deflate,sdch
Accept-Language: fi-FI,fi;q=0.8,en-US;q=0.6,en;q=0.4,fr;q=0.2

 SPECIFICATION 16 (23)
Signature Creation Service 1.1

22.11.2017

Väestörekisterikeskus

2.6.3 Response

The SCS responses to the signature creation request by sending the signature creation
response.

HTTP protocol parameters:

- Status-Code: 200

- Content-Type: application/json

- Other HTTP parameters are filled in as specified by HTTP/1.1 and CORS
specifications.

Signature creation response:

 version (string, mandatory) contains the version of the SCS specification version
that the SCS supports (which for this version is "1.1").

 status (string, mandatory) indicates whether the signature creation operation was
successful.

o "ok" indicates that the operation was successful,

o "failed" indicates that the operation failed.

 reasonCode (integer, mandatory) gives the reason code of the response status.
Possible values are listed in section 2.7.

 reasonText (string, mandatory) gives textual description of the reason code.

 signature (string, optional) contains the digital signature that is base64 encoded.
Present if signature creation operation was successful.

 signatureType (string, optional) contains the type of the signature. Supported
values are "signature" and “cms”. Present if signature creation operation was
successful.

 signatureAlgorithm (string, optional) contains the format of the digital signature.
Supported values are: "SHA1withRSA", "SHA256withRSA", "SHA384withRSA",
"SHA512withRSA", "SHA1withECDSA", "SHA256withECDSA",
"SHA384withECDSA", and "SHA512withECDSA". Present if signature creation
operation was successful.

 chain (array, optional) contains the certificate chain of the end user certificate.
The end user certificate is at index 0. All certificates are base64 encoded. Present
if signature creation operation was successful. The chain may be incomplete and
contain only the end user certificate.

Example HTTP response of signature creation response:

 SPECIFICATION 17 (23)
Signature Creation Service 1.1

22.11.2017

Väestörekisterikeskus

HTTP/1.1 200 OK
Content-Length: 5858
Content-Type: application/json
Server: SCS 1.1 (2017-06-04)
Access-Control-Allow-Origin: *
Accept: application/json, */*
Date: Wed, 04 Jun 2017 07:38:16 GMT

{
 "version": "1.1",
 "signatureAlgorithm": "SHA256withRSA",
 "signatureType": "signature",
 "signature":
 "eHF1oXKD62+KTSUb3GPNMhYumwjtL...EVvvo++k+fzDK41nvK5lAZSkA==",
 "chain":[
 "MIIGADCCBOigAwIBAgIEBfetjDA...iLniyk0+r5aasoF7TY9n4tpMWmg==",
 "MIIFcDCCBFigAwIBAgIDAdbDMA0...fBVhROQzKoDAk1DPtg1gOADYfLg==",
 "MIIEHjCCAwagAwIBAgIDAdTAMA0...lEtXfFCfv9DA8MeVIUfa2pTH6Tk="
],
 "status": "ok",
 "reasonCode": 200,
 "reasonText":"Signature generated"
}

2.7 Reason codes

The reason codes for signature creation response messages are modeled after the HTTP
status codes:

 2xx series indicates a successful operation.

 4xx series indicates that the operation was cancelled due to some reason, and

 5xx series indicates that the SCS is malfunctioning or not supporting requested
functionality.

The reason codes define general categorization of the operation result (e.g., ok, user
cancelled, bad request), and are not intended to give detailed description to the HTML5
application. More detailed error handling should be done internally by the SCS.

The reason code related response parameters:

 status (string, mandatory): "ok" if the operation was successful, "failed" if the
operation was unsuccessful. If the reasonCode value is 200, then status is "ok".
With any other reasonCode value, the status is "failed".

 reasonCode (integer, mandatory): possible reason code values are listed on the
table below. This field intended for general categorization of the error class, and
should be used generate end user understandable error message in desired
language.

 reasonText (string, mandatory): the textual error description. It is recommended
that description takes the form "<Text>: <Description>" where <Text> is the text in
the Text column in the table below, and the <Description> contains more detailed

 SPECIFICATION 18 (23)
Signature Creation Service 1.1

22.11.2017

Väestörekisterikeskus

description of the error. This field is mainly intended for developers, and should
not be shown to the end user.

Code Text Explanation
200 OK Signature was created successfully
400 Bad request Request was malformed, e.g.,

- unknown Request-URI
- bad JSON format
- missing mandatory parameters in signing

request
- a parameter contains a value that is not

supported
401 Unauthorized End user cancelled operation, e.g.:

- end user did not select a certificate,
- usage of the key was not authorized (e.g., PIN

mistyped, PIN typing cancelled, or PIN locked)
- end user does not have any applicable

certificates
403 Forbidden Request was denied, e.g.:

- another request is being processed already
- request was made from unidentified origin, i.e.,

https protocol was not used to download
HTML5 app requesting the signature

413 Request Entity Too Large Request size was too big
500 Internal Server Error SCS is not working properly, e.g., is misconfigured
501 Not Implemented Requested functionality is not implemented.

An example error response:

HTTP/1.1 200 OK
Content-Length: 88
Content-Type: application/json
Server: SCS 1.1 (2017-06-04)
Access-Control-Allow-Origin: *
Accept: application/json, */*
Date: Wed, 04 Jun 2017 07:38:16 GMT

{
 "status": "failed",
 "reasonCode": 401,
 "reasonText":"Not Authorized: end user cancelled operation"
}

 SPECIFICATION 19 (23)
Signature Creation Service 1.1

22.11.2017

Väestörekisterikeskus

3 Security considerations

This section is non-normative.

3.1 Authentication

The SCS can be used for end user authentication as well. A server creates a challenge
request that has predetermined format, which is then digitally signed by the SCS using an
end user certificate intended for authentication purposes. The authentication is validated
by the server, it the signature is valid for the given challenge. The challenge should
contain nonce and origin header contents, which the server should check to be valid to
prevent replay attacks.

Additionally, the SCS could include a client nonce to the challenge so that the SCS would
generate a different signature even if the challenge remains the same (similarly as
described in section 3.7). This specification does not support this functionality.

3.2 Confidentiality, Integrity, Privacy

In this specification, the connection to the SCS can be protected, i.e., HTTPS protocol is
used (cf. chapter 2.3).

3.3 Local server socket

The SCS server socket uses a server socket that is listening on the localhost interface.
The implementers must make sure that connections to the SCS are allowed only from the
localhost, i.e., connections from other devices should not be allowed. See also section
3.9 on Malware.

3.4 End user permission

The SCS should request for end user approval each time it receives a request for digital
signature generation, i.e., it should not silently sign any content. Therefore the SCS will
always show the certificate selection dialog when a signature creation request is
received.

3.5 Identifying origin

The SCS should indicate to the end user the origin of the signature creation request. At
its simplest terms, it can show the content of the HTTP header Origin, which is sent by
the browser when it is making the CORS request to the SCS.

3.6 Non-repudiation signatures

In order to make non-repudiation signatures more meaningful, the end user should be
able to approve the content that is being signed. In practice, the SCS should show the
content that is being signed to the end user so that the end user can inspect what is
being signed. However, for instance binary or xml content cannot be displayed to the end
user in understandable form. The current specification allows that content can be signed
without showing the end user what is being signed.

 SPECIFICATION 20 (23)
Signature Creation Service 1.1

22.11.2017

Väestörekisterikeskus

3.7 Nonce

In order to prevent the SCS to sign data that is completely given by the requestor, the
SCS could be able to add nonce data to the to-be-signed data before it is being signed.
This is typically not possible as it would break that signing procedure. However, it is
possible with XML Signatures where the <Signature> element can be appended with
optional <Object> elements without breaking the application level logic. However, the
current specification does not support this functionality.

3.8 Certificate types

Typically in PKI, the end entity certificates have three major use cases:

 authentication, where the certificate is used to authenticate the user
(authentication is typically done by digitally signing a piece of data that has been
constructed from nonce values generated by the parties involved)

 decryption, where the key is used to send encrypted data to the holder of the key
(encryption is typically done by a shared key that has then been encrypted with
recipient's public key)

 non-repudiation, where the certificate used to digitally sign a piece of data (this is
analogous to handwritten signature, where the signer enters into an agreement
with another party)

The current specification does not limit the use of the certificates based on their intended
usage but only digital signatures are supported (authentication, non-repudiation) but the
decryption (unwrap) functionality is not supported.

3.9 Malware

As the SCS exposes a server socket on localhost (see section 3.3), any local application,
e.g., malware, is able to send signature creation requests to the SCS. As the end user is
always prompted with a certificate selection dialog, these requests are not silently
processed, but it will be annoying and essentially a denial of service attack as the end
user will get these dialogs every time there is a request (unless the SCS is already
processing a request). The current specification does not address this threat.

One solution to address this threat is that the SCS has an admin interface (UI), where
there would be an authorization view. In the authorization view, there would be an
authorization token shown (e.g., 20 alphanumeric values). The first HTML5 application
that tries to use the SCS interface in a particular browser, the SCS would send a HTTP
response 403 Authorization required. The HTML5 application would then have logic to
ask the end user to provide the authorization token. The end user would go to the
authorization view, copy the token, and paste it to the dialog the HTML5 application
would be showing. The HTML5 application would then give the token to the SCS and the
SCS would set a permanent cookie with the browser. Any subsequent request to the
SCS by the browser (regardless of the origin of the HTML5 app) would contain this
cookie, which SCS would always check. This means that the SCS needs to enable the
use of credentials in CORS (e.g., use Access-Control-Allow-Credentials header). After
the token has been used once in authorization, it is discarded, and the SCS generates a
new one.

 SPECIFICATION 21 (23)
Signature Creation Service 1.1

22.11.2017

Väestörekisterikeskus

3.10 Multi-user environments

The current specification does not support cases, where the operating system is a multi-
user environment. This is due to the fact that if the system has multiple users logged on,
there also should be as many SCS instances running as well. As the SCS should be
running in predefined port on the localhost interface, it is not possible to distinguish which
SCS instance belongs to which logged on user with the current specification.

3.11 Browser policies

CORS access from a web page is typically limited to the same scheme that was used
when the corresponding HTML5 application (i.e., web page) was downloaded. In other
words, if a web page was downloaded using https, the subsequent CORS requests must
also be done using https. Similarly, if the web page was downloaded using plain http,
then CORS requests need to be done with http also.

Some browsers (at the writing of this document, Internet Explorer 10 and 11) may by
default restrict the access to the localhost interface using CORS mechanism. In this
case, the end user should enable access via browser settings or and a system
administrator should enable access by changing browser policies remotely.

 SPECIFICATION 22 (23)
Signature Creation Service 1.1

22.11.2017

Väestörekisterikeskus

4 SCS Profiles

This chapter describes the SCS profiles, i.e., operation parameters for SCS instances.
For instance, a SCS instance can be said to "implement" RSA signature profile in which
case it must follow profiles specifications listed below.

SCS implementations are required to implement support for parameters that underlined.

4.1 Base profile

Abstract profile.

Server port: 53952 (https port). The SCS shall use the listed port for https based access.

HTTP methods: GET, POST

HTTP URI: /sign, /version

4.2 RSA signature profile

Extends Base profile.

Hash algorithms: "SHA1", "SHA256" (default), "SHA384", "SHA512"

Signature algorithms: "SHA1withRSA", "SHA256withRSA" (default), "SHA384withRSA",
"SHA512withRSA"

Content types (to be signed data): "data", "digest" (digest allowed only for signing
purposes)

Signature types: "signature", "cms"

CMS signature content (required fields):

 version: 1

 digestAlgorithms: SHA-1, SHA-256, SHA-384, or SHA-512 object identifier

 contentInfo.contentType: CMS Data object identifier

 contentInfo.content: The signed data is included if the original request had
contentType as "data". If the original request had contentType as "digest", then
signed data is not included.

 certificates: Contains the signing certificate and certificate chain.

 crls: Not present

 signerInfo.version: 1

 signerInfo.issuerAndSerialNumber: The issuer and serial number of the identity
certificate

 SPECIFICATION 23 (23)
Signature Creation Service 1.1

22.11.2017

Väestörekisterikeskus

 signerInfo.digestAlgorithm: The same digest algorithm object identifier as in
digestAlgorithms field

 signerInfo.authenticatedAttributes (required fields, other fields may be included):

o contentType: The same value as in contentInfo.contentType field

o messageDigest: Calculated message digest of the signed data using
digest algorithm specified by signerInfo.digestAlgorithm. This value is
either calculated by the implementation (i.e, when to-be-signed data is
given by the requestor) or the value was given by the requester directly.

o signingTime: The time when this CMS object was signed

 signerInfo.digestEncryptionAlgorithm: PKCS#1 rsaEncryption object identifier

 signerInfo.encryptedDigest: The result of encrypting the message digest of the
complete DER encoding of the attributes value contained in the
signerInfo.authenticatedAttributes field with signer’s private key.

4.3 ECDSA profile

Extends Base profile.

Hash algorithms: "SHA1", "SHA256" (default), "SHA384", "SHA512"

Signature algorithms: "SHA1withECDSA", "SHA256withECDSA" (default),
"SHA384withECDSA", "SHA512withECDSA"

Content types (to be signed data format): "data", "digest" (digest allowed only for signing
purposes)

Signature types: "signature", "cms"

CMS signature content

All fields are the same as in RSA signature profile except:

 signerInfo.digestEncryptionAlgorithm: ECDSA signature algorithm identifier
(SHA1withECDSA, SHA256withECDSA, SHA384withECDSA, or
SHA512withECDSA)

 signerInfo.encryptedDigest: the result of signing the message digest of the
complete DER enconding of the attributes value contained in the
signerInfo.authenticatedAttributes field with signer’s private key.

