
 15.3.2004

FINEID SPECIFICATION

Population Register Centre (VRK)
Certification Authority Services
P.O. Box 70
FIN-00581 Helsinki
Finland
http://www.fineid.fi

FINEID - S1
Electronic ID Application

v 2.1

 FINEID SPECIFICATION 15.3.2004

 FINEID - S1 / v2.1 i

Authors
Name Initials Organization E-mail

Antti Partanen AP VRK antti.partanen@vrk.intermin.fi

Markku Sievänen MaSi Setec Oy markku.sievanen@setec.com

Document history
Version Date Editor Changes Status

2.1 15.3.2004 AP References to ISO/IEC FDIS 7816-
15 changed to ISO/IEC 7816-15

Accepted

2.0A 30.6.2003 AP References to ISO FCD 7816-15
changed to ISO/IEC FDIS 7816-15

Accepted

2.0 10.3.2003 AP Editorial changes, minor corrections Accepted

1.0 7.11.2002 MaSi First edition Draft

 FINEID SPECIFICATION 15.3.2004

 FINEID - S1 / v2.1 ii

Table of Contents
1 Introduction .. 1

1.1 Normative references...1

1.2 Informative references ...1

1.3 Related FINEID documentation ...1

2 Abbreviations ... 1
3 File structure and contents ... 2
4 Command interface.. 3

4.1 SELECT ...3

4.2 SELECT FILE...4

4.3 GET RESPONSE...5

4.4 READ BINARY...5

4.5 VERIFY ..6

4.6 MANAGE SECURITY ENVIRONMENT: RESTORE ...7

4.7 MANAGE SECURITY ENVIRONMENT: SET..7

4.8 PERFORM SECURITY OPERATION: HASH..9

4.9 PERFORM SECURITY OPERATION: COMPUTE DIGITAL SIGNATURE10

4.10 PERFORM SECURITY OPERATION: DECIPHER...11

4.11 CHANGE REFERENCE DATA..11

4.12 RESET RETRY COUNTER ...12

4.13 UPDATE BINARY ..13

4.14 ERASE BINARY...14

4.15 GET DATA ...14

5 Implementation guidelines for software developers ... 16
5.1 Resource management..16

5.2 Resetting the card ..16

5.3 Application/File selection..17

5.3.1 CIA application...17

5.3.2 Path..17

5.4 Authentication objects ..17

5.4.1 Accessing objects ..18

5.4.2 Auth required flag...19

5.5 Private key operations (sign and decrypt)..19

5.5.1 Signature operation..19

5.5.2 Decryption operation..20

Annex A (Informative): Coding of the File Control Information template 21
Access conditions...23

Simple coding...24

Adaptive coding..26

SC byte 27

Annex B (Informative): Status conditions ... 28

 FINEID SPECIFICATION 15.3.2004

 FINEID - S1 / v2.1 iii

Success conditions...28

Warning conditions...28

Error conditions ..28

 FINEID SPECIFICATION 15.3.2004
 FINEID - S1 / v2.1 1(29)

1 Introduction
This document describes the command interface and the content of the Finnish Electronic
Identification (FINEID) application version 2.1. The FINEID application version 1.1 is
described in the document “FINEID – S1, Electronic ID application, v1.1, Markku Kontio”.

The file structure is based on ISO/IEC 7816-15. The command set supported by the card is
based on ISO/IEC 7816-4 and ISO/IEC 7816-8.

All ASN.1 type, value and information object class definitions referred in this document are
from module Cryptographic Information Framework defined in ISO/IEC 7816-15.

1.1 Normative references
The most important specifications are listed below:

- ISO, Information Technology - Identification cards - Integrated circuit(s) cards
with contacts
Part 1: Physical Characteristics, ISO/IEC 7816-1
Part 2: Dimensions and location of the contacts, ISO/IEC 7816-2
Part 3: Electronic signals and transmission protocols, ISO/IEC 7816-3
Part 4: Interindustry commands for interchange, ISO/IEC 7816-4
Part 5: Numbering system and registration procedure for application identifiers,
ISO/IEC 7816-5
Part 6: Interindustry data elements, ISO/IEC 7816-6
Part 8: Security related interindustry commands, ISO/IEC 7816-8
Part 15: Cryptographic information application, ISO/IEC 7816-15

- Open Platform, Card Specification, Version 2.0.1, Global Platform, 7 April 2000.

1.2 Informative references
The following documents have also influenced this specification:

- PKCS#1 v2.1, RSA Cryptography Standard, June 14, 2002.

- DIN NI-17.4 v1.0, DIN Specification of chipcard interface with digital signature
application/function acc. to SigG and SigV, 15.12.1998.

- FINEID – S1, Electronic ID application v1.12, 4.11.2002.

1.3 Related FINEID documentation
FINEID documentation is available at

- http://www.fineid.fi

2 Abbreviations
AC Access Condition

AID Application IDentifier

APDU Application Protocol Data Unit

ASN.1 Abstract Syntax Notation One

 FINEID SPECIFICATION 15.3.2004
 FINEID - S1 / v2.1 2(29)

CIA Cryptographic Information Application

CLA Class byte

CT Confidentiality Template

CRDO Control Reference Data Object

CRT Chinese Remainder Theorem

DF Dedicated File

DO Data Object

DST Digital Signature Template

EF Elementary File

FCI File Control Information

FCP File Control Parameter

FINEID Finnish Electronic IDentification

MF Master File

MSE Manage Security Environment

PIN Personal Identification Number

PKCS Public-Key Cryptography Standards

PSO Perform Security Operation

PUK PIN Unblocking Key

RFU Reserved for Future Use

RSA Rivest, Shamir, Adleman

SC Security Condition

SE Security Environment

SFID Short File IDentifier

S/MIME Secure Multipurpose Internet Mail Extensions

SW1-SW2 Status bytes

3 File structure and contents
The file structure and contents shall be according to ISO/IEC 7816-15 standard.

The application should contain at least the following objects:

- private key(s),

- authentication object(s),

- card holder certificate(s) and

- trusted certificate(s).

The reader is advised to read ISO/IEC 7816-15 for additional information of the file
structure and contents.

 FINEID SPECIFICATION 15.3.2004
 FINEID - S1 / v2.1 3(29)

4 Command interface
This chapter describes the commands (and their parameters) that shall be supported by
FINEID application. Additional commands may be supported by the application but they
are not normally used by host applications utilizing the FINEID application.

The reader is advised to refer to ISO/IEC 7816-4 and ISO/IEC 7816-8 for more detailed
information about the commands.

Table 1. EID application related commands

Command Standard Functionality
SELECT Open Platform,

Card
Specification,
version 2.0.1

Select an application on the card.

SELECT FILE ISO/IEC 7816-4 Select a file from the card’s file system
GET RESPONSE ISO/IEC 7816-4 Read response data from the card (in T=0

protocol)
READ BINARY ISO/IEC 7816-4 Read binary data from a transparent (binary) file
VERIFY ISO/IEC 7816-4 Verify reference data presented by user (e.g. PIN)

with the reference data stored inside the card.
The current verification status can be also queried
with this command.

MANAGE SECURITY
ENVIRONMENT:
RESTORE

ISO/IEC 7816-8 Restore a predefined (or empty) security
environment.

MANAGE SECURITY
ENVIRONMENT: SET

ISO/IEC 7816-8 Set the security environment (algorithms, keys)
that shall be used in the following PERFORM
SECURITY OPERATION commands.

PERFORM SECURITY
OPERATION: HASH

ISO/IEC 7816-8 Calculate a hash code. The algorithm is specified
with the MSE command.

PERFORM SECURITY
OPERATION:
COMPUTE DIGITAL
SIGNATURE

ISO/IEC 7816-8 Compute a digital signature with a private key.
The algorithm and key are specified with the
MSE command.

PERFORM SECURITY
OPERATION:
DECIPHER

ISO/IEC 7816-8 Decrypt data with a private key. The algorithm
and key are specified with the MSE command.

CHANGE REFERENCE
DATA

ISO/IEC 7816-8 Change the current reference data (e.g. PIN)

RESET RETRY
COUNTER

ISO/IEC 7816-8 Unlock locked reference data (e.g. PIN)

UPDATE BINARY ISO/IEC 7816-4 Update the contents of a transparent (binary) file
ERASE BINARY ISO/IEC 7816-4 Erase the contents of a transparent (binary) file
GET DATA ISO/IEC 7816-4 Retrieve the public part of a RSA key

4.1 SELECT
The Select command selects an application on the card. All successive commands are
handled by the selected application until a new application selection is made.

 FINEID SPECIFICATION 15.3.2004
 FINEID - S1 / v2.1 4(29)

Table 2. SELECT command APDU

Byte Value
CLA 00h
INS A4h
P1 04h – select by name (by Application IDentifier (AID))
P2 00h – select first or only occurrence

02h – select next occurrence
Lc length of subsequent data field

Data AID
Le 00h

Table 3. SELECT response APDU

Byte Value
Data File Control Information (FCI)

SW1-SW2 Status bytes

The content of FCI is described in Annex A.

4.2 SELECT FILE
The SELECT FILE command selects a file from the card’s file system according to file
identifier, file path or application identifier (AID).

Table 4. SELECT FILE command APDU

Byte Value
CLA 00h
INS A4h
P1 00h - select EF, DF or MF by file identifier

08h - select file by absolute path from MF
09h - select file by relative path from current DF

P2 00h - FCI returned in response
Lc Empty or length of subsequent data field

Data P1 = 00h
- EF, DF or MF file identifier (or empty = MF)

P1 = 08h
- absolute path from MF without the identifier of MF (3F00h)

P1 = 09h
- relative path from the current DF without the identifier of the current DF

Le Empty or maximum length of data expected in response

Table 5. SELECT FILE response APDU

Byte Value
Data File Control Information (FCI)

SW1-SW2 Status bytes

The content of FCI is described in Annex A.

 FINEID SPECIFICATION 15.3.2004
 FINEID - S1 / v2.1 5(29)

4.3 GET RESPONSE
The GET RESPONSE command returns response data from the card in T=0 protocol.

This command is used in to get response data from commands

- SELECT FILE,

- PERFORM SECURITY OPERATION: COMPUTE DIGITAL SIGNATURE and

- PERFORM SECURITY OPERATION: DECIPHER.

Table 6. GET RESPONSE command APDU

Byte Value
CLA 00h
INS C0h
P1 00h
P2 00h
Lc Empty

Data Empty
Le Maximum length of data expected in response

Table 7. GET RESPONSE response APDU

Byte Value
Data Value of the response

SW1-SW2 Status bytes

4.4 READ BINARY
The READ BINARY command is used to read consecutive bytes from the current
(transparent) elementary file.

Table 8. READ BINARY command APDU

Byte Value
CLA 00h
INS B0h
P1 See table below
P2 See table below
Lc Empty

Data Empty
Le Number of bytes to read

 FINEID SPECIFICATION 15.3.2004
 FINEID - S1 / v2.1 6(29)

Table 9. READ BINARY: coding of P1 and P2.

Coding of P1 and P2

b8 b7 b6 b5 b4 b3 b2 b1 Hex Meaning

0 - - - - - - - - P1-P2 specifies a 15-bit offset of the data to be read

1 - - - - - - - - P1 specifies a short FID and P2 specifies an 8-bit offset of
the data to be read

1 0 0 x x x x x - – short FID (value domain 1 – 30)

Table 10. READ BINARY response APDU

Byte Value
Data Data read from the file

SW1-SW2 Status bytes

4.5 VERIFY
The VERIFY command is used to authenticate the user. Verification data (e.g. PIN) is
compared with the reference data stored internally by the card.

Table 11. VERIFY command APDU

Byte Value
CLA 00h
INS 20h
P1 00h
P2 Qualifier of the PIN, see table below.
Lc Empty or length of subsequent data field

Data Empty or verification data (padded to the correct length).
Padding is done according to ISO/IEC 7816-15 .

Le Empty

Table 12. Qualifier of the PIN

Coding of the P2

b8 b7 b6 b5 b4 b3 b2 b1 Hex Meaning

0 - - - - - - - - Global reference data (card PIN). Not supported in FINEID
context.

1 - - - - - - - - Specific reference data (DF specific PIN)

- x x x x - - - - ’0000’ (Other values are RFU)

- - - - - x x x - PIN number (according to ISO/IEC 7816-15)

- - - - - 0 0 0 RFU

Table 13. VERIFY response APDU

Byte Value
Data Empty

SW1-SW2 Status bytes

 FINEID SPECIFICATION 15.3.2004
 FINEID - S1 / v2.1 7(29)

If Lc = 00h, the command can be used to retrieve the number X of further allowed
retries (SW1-SW2 = 63CXh), or to check whether the verification is not required
(SW1-SW2 = 9000h).

4.6 MANAGE SECURITY ENVIRONMENT: RESTORE
The MANAGE SECURITY ENVIRONMENT: RESTORE command is used to restore a
predefined (or empty) SECURITY ENVIRONMENT.

Table 14. MANAGE SECURITY ENVIRONMENT: RESTORE command APDU

Byte Value
CLA 00h
INS 22h – MSE
P1 11110011b = F3h – RESTORE
P2 Number of the SE to be restored (00h is an empty SE)
Lc Empty

Data Empty
Le Empty

Table 15. MANAGE SECURITY ENVIRONMENT: RESTORE response APDU

Byte Value
Data Empty

SW1-SW2 Status bytes

4.7 MANAGE SECURITY ENVIRONMENT: SET
The MANAGE SECURITY ENVIRONMENT: SET command is used to set attributes in
the current SECURITY ENVIRONMENT.

Table 16. MANAGE SECURITY ENVIRONMENT: SET command APDU

Byte Value
CLA 00h
INS 22h
P1 01000001b = 41h – computation and decipherment

-
P2 P1 = SET

- P2 = B6h, value of DST in data field
- P2 = B8h, value of CT in data field

Lc Empty or length of subsequent data field
Data Concatenation of CRDOs
Le Empty

Table 17. MANAGE SECURITY ENVIRONMENT:SET response APDU

Byte Value
Data Empty

SW1-SW2 Status bytes

 FINEID SPECIFICATION 15.3.2004
 FINEID - S1 / v2.1 8(29)

The table below describes the Control Reference Data Objects (CRDO) that are supported
in Digital Signature Templates (DST) and Confidentiality Templates (CT).

Table 18. Control Reference Data Objects (CRDO)

Tag Value DST CT
80h Algorithm reference + +
81h File reference (file identifier or a path)

- only file identifiers shall be used in FINEID context
- used to identify the key file to be used in cryptographic

operations
- value specified in PKCS#15 private key object’s

Path.efidOrPath

+ +

Table 19. MANAGE SECURITY ENVIRONMENT:SET supported P1-P2 combinations

Supported combinations of P1-P2

P1 P2 Meaning CRDO in
data field

Data field contents

'41' 'B6' SET SE for digital signature DST ' 80 01 xx 81 02 xx xx '

'41' 'B8' SET SE for decipherment CT ' 80 01 xx 81 02 xx xx ‘

The supported values for the CRDO algorithm reference (tag 80h) are specified in the table
below. The coding is taken from DIN NI-17.4 version 1.0 specification (annex F table F.2)
with some modifications. The high nibble of the algorithm reference specifies the hash
algorithm used (if hashing is relevant for the algorithm). The low nibble specifies the rest of
the details about the algorithm.

Table 20. Values for the algorithm reference

Algorithm
reference

Details

0Xh No hash algorithm
1Xh SHA-1 hash algorithm (id-sha1)
2Xh RFU
X0h ’Raw’ RSA algorithm (card does not do any input or output formatting i.e. padding or

hash encapsulation)
Signature generation operation (PSO: COMPUTE DIGITAL SIGNATURE):
1. Input data size must equal modulus length i.e. hash is NOT encapsulated or

padded by the card. Modulus length shall be a multiple of eight for this algorithm.
2. RSASP1 signature primitive is applied (RSA private key operation)

Decryption operation (PSO: DECIPHER):
1. RSADP decryption primitive is applied (RSA private key operation)
2. Padding is NOT removed by the card.

X1h RFU

 FINEID SPECIFICATION 15.3.2004
 FINEID - S1 / v2.1 9(29)

X2h RSASSA-PKCS1-v1_5 signature scheme (according to PKCS#1 v2.1 with RSA
algorithm, compatible with PKCS#1 v1.5)
Signature generation operation (PSO: COMPUTE DIGITAL SIGNATURE):
1. The hash code is encapsulated into DigestInfo ASN.1 structure according to

selected hash algorithm. If no hash algorithm is selected (02h), the hash
encapsulation is not done by the card.

2. DigestInfo is padded to modulus length according to PKCS#1 v1.5 (block type
01h). The size of the DigestInfo shall not be more than 40% of modulus length.

3. RSASP1 signature primitive is applied (RSA private key operation)

RSAES-PKCS1-v1_5 encryption scheme (according to PKCS#1 v2.1 with RSA
algorithm, compatible with PKCS#1 v1.5)
Decryption operation (PSO: DECIPHER):
1. RSADP decryption primitive is applied (RSA private key operation)
2. PKCS#1 v1.5 padding is removed

X3h RFU
X4h RFU

4.8 PERFORM SECURITY OPERATION: HASH
PSO: HASH command calculates a hash sum over a large amount of data. The algorithm to
be used must be specified using the MANAGE SECURITY ENVIRONMENT command
(using DST CRDO in the data field). Currently only supported algorithm is SHA-1.

This command supports command chaining mechanism which utilizes the CLA value to
indicate the end of the command chain. The command chain has CLA = 10h for all but the
last command of the chain, which has CLA = 00h. In chained commands the commands
with CLA = 10h shall carry only data quantities which are multiples of the block size of the
hashing algorithm (64 bytes for SHA-1). The last command of the chain has no data length
limitations. In order to be able to sign or verify the generated hash sum, the CLA must be
00h (end of chain) in the PSO: HASH command given immediately before the PSO:
COMPUTE DIGITAL SIGNATURE command.

Table 21. PSO: HASH command APDU

Byte Value
CLA 00h/10h
INS 2Ah
P1 90h
P2 80h
Lc Length of subsequent data field

Data Data to be hashed
Le Empty.

The data field may contain zero or more (plain value) bytes to be integrated into the hash
sum (if no bytes are provided, the initial hash state is generated). Length of the data field
shall be multiple of the block size of the hashing algorithm (64 bytes for SHA-1) for all but
the last command of the chain. The algorithm identifier specified in the previous MANAGE
SECURITY ENVIRONMENT: SET command (using the DST CRDO) shall be 12h.

 FINEID SPECIFICATION 15.3.2004
 FINEID - S1 / v2.1 10(29)

Table 22. PSO: HASH response APDU

Byte Value
Data Empty

SW1-SW2 Status bytes

The calculated hash code is stored in the card and available for use in a subsequent
command (PSO: COMPUTE DIGITAL SIGNATURE).

4.9 PERFORM SECURITY OPERATION: COMPUTE DIGITAL
SIGNATURE

The PSO: COMPUTE DIGITAL SIGNATURE command calculates a digital signature.
The private key and algorithm to be used must be specified using the MANAGE
SECURITY ENVIRONMENT command.

The input to the command may be either

- a hash code (e.g. SHA-1 hash value 20 bytes),

- a DigestInfo ASN.1 structure encapsulating the hash code, or

- a full modulus size input buffer (padding done by host application), or

- empty (hash code is calculated by preceding PSO: HASH command(s))

according to the selected algorithm reference value.

Table 23. PSO: COMPUTE DIGITAL SIGNATURE command APDU

Byte Value
CLA 00h
INS 2Ah
P1 9Eh - digital signature data object is returned in response
P2 9Ah - data field contains data to be signed
Lc Length of subsequent data field

Data If algorithm reference in SE = 00h
- Data to be signed (e.g. encapsulated hash code). Padding is done to the full

modulus length by the host application.
If algorithm reference in SE = 02h:
- Hash code encapsulated by the host application into DigestInfo structure. Padding

is done internally by the card.
If algorithm reference in SE = 12h
- Hash code. Card encapsulates the hash into DigestInfo structure and pads it

internally according to PKCS#1 v1.5 into full modulus length.
- Empty. Hash code is calculated by preceding PSO: HASH command(s).

Le Empty or maximum length of data expected in response

Table 24. PSO: COMPUTE DIGITAL SIGNATURE response APDU

Byte Value
Data Digital signature

SW1-SW2 Status bytes

 FINEID SPECIFICATION 15.3.2004
 FINEID - S1 / v2.1 11(29)

4.10 PERFORM SECURITY OPERATION: DECIPHER
The PSO: DECIPHER command decrypts an encrypted message (cryptogram). The private
key and algorithm to be used must be specified using the MANAGE SECURITY
ENVIRONMENT command.

Table 25. PSO: DECIPHER command APDU

Byte Value
CLA 00h
INS 2Ah
P1 80h - decrypted value is returned in response
P2 86h - data field contains padding indicator byte (00h according to ISO/IEC 7816-4)

followed by the cryptogram
Lc Length of subsequent data field

Data 00h (padding indicator byte) || cryptogram
Le Empty or maximum length of data expected in response

Table 26. PSO: DECIPHER response APDU

Byte Value
Data If algorithm reference in SE = 00h

- Decrypted cryptogram. Padding is not removed by the card.
If algorithm reference in SE = 02h:
- Decrypted cryptogram. PKCS#1 v1.5 padding is removed by the card and only

the actual data is returned.
SW1-SW2 Status bytes

4.11 CHANGE REFERENCE DATA
The CHANGE REFERENCE DATA command is used to change the current internally
stored reference data into a new value. Current reference data is first compared with
verification data presented by the user.

Table 27. CHANGE REFERENCE DATA command APDU

Byte Value
CLA 00h
INS 24h
P1 00h - exchange reference data
P2 Qualifier of the PIN, see table below.
Lc Length of subsequent data field

Data Existing reference data (padded to the correct length) followed by new reference data
(padded to the correct length).
Padding is done according to ISO/IEC 7816-15.

Le Empty

 FINEID SPECIFICATION 15.3.2004
 FINEID - S1 / v2.1 12(29)

Table 28. Qualifier of the PIN

Coding of the P2

b8 b7 b6 B5 b4 b3 b2 b1 Hex Meaning

0 - - - - - - - - Global reference data (card PIN). Not supported in FINEID
context.

1 - - - - - - - - Specific reference data (DF specific PIN)

- x x x x - - - - ’0000’ (Other values are RFU)

- - - - - x x x - PIN number (according to ISO/IEC 7816-15)

- - - - - 0 0 0 RFU

Table 29. CHANGE REFERENCE DATA response APDU

Byte Value
Data Empty

SW1-SW2 Status bytes

4.12 RESET RETRY COUNTER
The RESET RETRY COUNTER command is used when a PIN code has been locked due
to too many consecutive unsuccessful verifications. Unlocking a PIN requires a resetting
code (a.k.a. PIN Unlocking Key, PUK) to be presented to the card by the user.

Table 30. RESET RETRY COUNTER command APDU

Byte Value
CLA 00h
INS 2Ch
P1 00h - reset retry counter and set new verification data
P2 Qualifier of the PIN, see table below.
Lc Empty or length of subsequent data field

Data Empty or resetting code (padded to the correct length) followed by new reference data
(padded to the correct length).
Padding is done according to ISO/IEC 7816-15.

Le Empty

 FINEID SPECIFICATION 15.3.2004
 FINEID - S1 / v2.1 13(29)

Table 31. Qualifier of the PIN

Coding of the P2

b8 b7 b6 B5 b4 b3 b2 b1 Hex Meaning

0 - - - - - - - - Global reference data (card PIN). Not supported in FINEID
context.

1 - - - - - - - - Specific reference data (DF specific PIN)

- x x x x - - - - ’0000’ (Other values are RFU)

- - - - - x x x - PIN number (according to ISO/IEC 7816-15)

- - - - - 0 0 0 RFU

Table 32. RESET RETRY COUNTER response APDU

Byte Value
Data Empty

SW1-SW2 Status bytes
If Lc = 00h, status bytes indicate the number X of further allowed retries (SW1-SW2 =
63CXh).

4.13 UPDATE BINARY
The UPDATE BINARY command is used update the contents of a transparent (binary) file.

Table 33. UPDATE BINARY command APDU

Byte Value
CLA 00h
INS D6h
P1 See table below
P2 See table below
Lc Length of subsequent data field

Data Data to be updated
Le Empty

Table 34. UPDATE BINARY: coding of P1 and P2.

Coding of P1 and P2

b8 b7 b6 b5 b4 b3 b2 b1 Hex Meaning

0 - - - - - - - - P1-P2 specifies a 15-bit offset of the data to be read

1 - - - - - - - - P1 specifies a short FID and P2 specifies an 8-bit
offset of the data to be read

1 0 0 x x x x x - – short FID (value domain 1 – 30)

Table 35. UPDATE BINARY response APDU

Byte Value
Data Empty

SW1-SW2 Status bytes

 FINEID SPECIFICATION 15.3.2004
 FINEID - S1 / v2.1 14(29)

4.14 ERASE BINARY
The ERASE BINARY command is used erase the contents of a transparent (binary) file.
Erasing is done starting from the address specified in bytes P1 and P2 until the end of file.

Table 36. ERASE BINARY command APDU

Byte Value
CLA 00h
INS 0Eh
P1 See table below
P2 See table below
Lc Empty

Data Empty
Le Empty

Table 37. ERASE BINARY: coding of P1 and P2.

Coding of P1 and P2

b8 b7 b6 b5 b4 b3 b2 B1 Hex Meaning

0 - - - - - - - - P1-P2 specifies a 15-bit offset of the data to be read

1 - - - - - - - - P1 specifies a short FID and P2 specifies an 8-bit offset of
the data to be read

1 0 0 x x x x x - – short FID (value domain 1 – 30)

Table 38. ERASE BINARY response APDU

Byte Value
Data Empty

SW1-SW2 Status bytes

4.15 GET DATA
The GET DATA command is used to retrieving a public key part of a RSA key pair. The
file from which the key information is being retrieved must have been selected using the
SELECT FILE command.

Table 39. GET DATA command APDU

Byte Value
CLA 00h
INS CAh
P1 01h
P2 See table below
Lc Empty

Data Empty
Le Number of bytes expected in response

Table 40. GET DATA: coding of P2

 FINEID SPECIFICATION 15.3.2004
 FINEID - S1 / v2.1 15(29)

Coding of P2

b8 b7 b6 b5 B4 b3 b2 b1 Hex Meaning

0 0 0 0 0 0 0 1 '00' Key info: algorithm identifier, length of modulus and
length of public exponent

0 0 0 0 0 0 1 0 '01' Modulus

0 0 0 0 0 0 1 1 '02' Public exponent

Any other value - RFU

Table 41. GET DATA response APDU

Byte Value
Data See table below

SW1-SW2 Status bytes

Table 42. GET DATA: response APDU Data field

GET DATA Response APDU Data field

Value of P1 Value of P2 Data field coding

Value Length

algorithm identifier (‘92 00’ (RSA CRT) is the only
currently supported value)

2

bit length of modulus 2

01h 00h

bit length of public exponent 2

Value Length

bit length of modulus 2

01h 01h

Modulus var

Value Length

bit length of public exponent 2

01h 02h

Public exponent var

 FINEID SPECIFICATION 15.3.2004
 FINEID - S1 / v2.1 16(29)

5 Implementation guidelines for software developers

5.1 Resource management
The FINEID card will be used by multiple host applications running simultaneously in the
same PC. Because the FINEID card is internally a simple state machine, these host
applications share the state of the FINEID card also. This sets some fundamental
requirements for the host applications accessing the shared resource (i.e. the FINEID card
and reader device):

1. Host applications must protect the command sequences they send to the FINEID card by
locking the card exclusively to themselves (and blocking access from others) while
doing these transactions.

2. The length of each transaction should be minimized.

3. Host applications should not assume that the state of the card (e.g. currently selected
application) stays unmodified between transactions. The only exception to that rule is
that the verification status of a successfully verified global PIN should be unaffected
between transactions. Check ISO/IEC 7816-15 for additional information on global
PINs.

WWW browserWWW browser

PKCS #11PKCS #11 Microsoft
CryptoAPI
Microsoft
CryptoAPI

PC/SC Resource ManagerPC/SC Resource Manager

ISO/IEC
7816-4
7816-8

Proprietary APIProprietary API

MF

DF

EF EFDF

EF EF DF

EF

ISO/IEC 7816-15
file structure

S/MIME eMailS/MIME eMail Application XApplication X

ISO/IEC
7816-15 support

ISO/IEC
7816-15 support

ISO/IEC
7816-15 support

ISO/IEC
7816-15 support

ISO/IEC
7816-15 support

ISO/IEC
7816-15 support

Figure 1. Example scenario of multiple host applications - single card

5.2 Resetting the card
Unnecessary resetting of the card should be avoided. When using PC/SC interface the card
is resetted automatically by the Resource Manager so there is no need for the host
application to explicitly reset the card before starting to use it.

 FINEID SPECIFICATION 15.3.2004
 FINEID - S1 / v2.1 17(29)

5.3 Application/File selection

5.3.1 CIA application
CIA (Cryptographic Information Application) application is selected using following
Application Identifier (AID):

 A0 00 00 00 63 50 4B 43 53 2D 31 35

Selection by Application identifier:

Command CLA INS P1 P2 Lc Data Le
SELECT 00 A4 04 00 0C A0 00 00 00 63 50 4B 43 53 2D 31 35 -

5.3.2 Path
CIA uses Path ASN.1 structure to reference various files. The Path.efidOrPath octet string
contains:

- a file identifier if the length of the octet string is two bytes

- an absolute path if the octet string is longer that two bytes and starts with the file
identifier of MF = 3F 00

- a relative path if the octet string is longer than two bytes and starts with the file
identifier of the DF (which is not 3F 00)

5.4 Authentication objects
In CIA all objects (private keys, certificates etc.) can be protected with authentication
objects (i.e. PINs). Each object may contain a pointer to an authentication object e.g. a
private key object may contain a pointer to a PIN object. This means that the private key
operation (decrypt or sign) can be done only after successful verification of the PIN code.

The following table lists the operations that can be protected with authentication objects in
the CIA sense.

Table 43. Objects and protected operations

Object type Operations protected with the authentication object
Private key Private key operations

- sign (PSO: COMPUTE DIGITAL SIGNATURE)
- decrypt (PSO: DECIPHER)

Public key Public key operations (not supported in FINEID context)
- verify (PSO: VERIFY DIGITAL SIGNATURE)
- encrypt (PSO: ENCIPHER)

Secret key Secret key operations (not supported in FINEID context)
- encrypt
- decrypt

Certificate Reading the contents of the certificate
Data object Reading the contents of data the object
Authentication
object

The authentication object can be used to unblock this authentication object
(e.g. unblocking PIN is used).

 FINEID SPECIFICATION 15.3.2004
 FINEID - S1 / v2.1 18(29)

5.4.1 Accessing objects
The flowchart below describes one possible solution for accessing objects and fulfilling the
authentication requirements (PIN verifications) of these objects.

6. Lock card
(prevent other applications

accessing card)

8. VERIFY PIN

7. SELECT
PIN directory

10. Object specific
operations

4. Has this PIN
been already

verified?

3. Check if user
consent is required?

User consent required

no

yes
5. Ask PIN
from user
(dialog)

12. END

1. BEGIN

no

2. Is object protected
with PIN?

User consent NOT required

yes

11. Unlock card

9. Lock card
(prevent other applications

accessing card)

Figure 2. Example of PIN logic

The command sequence in PIN verification consists of two commands described below.

Select PIN directory specified in PassWordAttributes.path (example path OCTET STRING
= 3F 00 50 16):

Command CLA INS P1 P2 Lc Data Le
SELECT FILE 00 A4 08 00 02 50 16

(MF file identifier 3F 00 removed)
-

Verify PIN. Padding is done according to PassWordAttributes (storedLength, padChar).
The P2 value is taken from PassWordAttributes.pwdReference (example value 82):

Command CLA INS P1 P2 Lc Data Le
VERIFY 00 20 00 82 08 31 32 33 34 35 36 00 00

(PIN = 123456 in ASCII with 00 padding)
-

The verification status of a PIN may be dropped automatically to state ‘not verified’ by the
card operating system after performing e.g. a private key operation. This is indicated by the
userConsent element of the private key object . E.g. userConsent value set to one for a
private key object indicates that the card holder must manually enter the PIN for each
private key operation. Requiring user interaction for all operations done with a specific
private key is a trade-off between usability and security. It is anticipated that this feature
will be used for performing legally binding non-repudiable digital signatures only.

The object specific operations in step 10 include the ones listed in the Table 43.

 FINEID SPECIFICATION 15.3.2004
 FINEID - S1 / v2.1 19(29)

5.4.2 Auth required flag
In addition to the ‘on demand’ access control of objects in CIA it is also possible to protect
some of the object directory files. The EF.CIAInfo contains a CardFlags.authRequired flag
indicating that the first authentication object in the AOD is used to protect other object
directory files than OD and AOD (ISO/IEC 7816-15 chapter 8.10 and annex B).

5.5 Private key operations (sign and decrypt)
There may be multiple private keys in the same CIA application. The host application must
first determine which one of these private keys to use. This can be done e.g. based on the
information inside card holder certificates according to application specific criteria (e.g. key
usage bits and CA policy OIDs). Each certificate contains a pointer to the corresponding
private key object.

Private keys are accessed like any other objects according to Figure 2. The command
sequence of step 10 of that flowchart is described below.

5.5.1 Signature operation
It is assumed that PIN verification is already done and current DF is the DF, where the RSA
key file containing the RSA key to be used is located.

Restore the empty SE:

Command CLA INS P1 P2 Lc Data Le
MSE:

RESTORE
00 22 F3 00 - - -

Set the following properties into the SE Digital Signature Template:

- algorithm reference (= 12 i.e. RSASSA-PKCS1-v1_5 signature with SHA-1, card does
padding and DigestInfo encapsulating of the hash)

- key file path (= 4B 02 derived from PrivateRSAKeyAttributes.value path)

Command CLA INS P1 P2 Lc Data Le
MSE: SET 00 22 41

computation
B6

DST in data
field

07 80 01 12
(algorithm reference = 12)
81 02 4b 02
(private key file identifier)

-

Sign the hash calculated by the host application:

Command CLA INS P1 P2 Lc Data Le
PSO:

COMPUTE
DIGITAL

SIGNATURE

00 2A 9E 9A 14 4B 52 16 5B 4A B6 54 C3 E5 4F
64 B5 F1 EE A6 45 D4 6B 65 C8

XX

XX is the maximum length of the digital signature returned in response.

Get the response in T=0 protocol:

 FINEID SPECIFICATION 15.3.2004
 FINEID - S1 / v2.1 20(29)

Command CLA INS P1 P2 Lc Data Le
GET

RESPONSE
00 C0 00 00 - - XX

5.5.2 Decryption operation
It is assumed that PIN verification is already done and current DF is the DF, where the RSA
key file containing the RSA key to be used is located.

Restore the empty SE:

Command CLA INS P1 P2 Lc Data Le
MSE:

RESTORE
00 22 F3 00 - - -

Set the following properties into the SE Confidentiality Template:

- algorithm reference (= 02 i.e. RSAES-PKCS1-v1_5 decryption, card removes padding)

- key file path (= 4B 01 derived from PrivateRSAKeyAttributes.value path)

Command CLA INS P1 P2 Lc Data Le
MSE: SET 00 22 41

decryption
B8

CT in data
field

07 80 01 02
(algorithm reference = 02)
81 02 4B 01
(private key file identifier)

-

Decrypt the modulus size (example 1024 bits) cryptogram:

Command CLA INS P1 P2 Lc Data Le
PSO:

DECIPHER
00 2A 80 86 81 00 (padding indicator byte)

4B 52 16 … 54 C3 E5
(cryptogram)

XX

XX is the maximum length of the decrypted cryptogram. PKCS#1 v1.5 padding is removed
by the card when using the algorithm 02.

Get the response in T=0 protocol:

Command CLA INS P1 P2 Lc Data Le
GET

RESPONSE
00 C0 00 00 - - XX

 FINEID SPECIFICATION 15.3.2004
 FINEID - S1 / v2.1 21(29)

Annex A (Informative): Coding of the File Control Information
template

The FCI template returned by SELECT and SELECT FILE commands is a TLV (Tag-
Length-Value) coded data structure.

Coding of the FCI template:

Tag Length Value
6Fh XXh File Control Parameter Data Objects (FCP DOs)

Coding of the FCP DOs:

File Control Parameter DOs

Tag L Value Applies to

81h 2 Number of data bytes in the file, including structural
information if any

Any file

82h 1 File descriptor byte Any file

83h 2 File identifier (FID) Any file

84h 1 – 16 DF name DFs

86h var Security attributes, proprietary coding Any file

8Ah 1 Life Cycle Status Integer (LCSI) Any file

A5h var Proprietary information (constructed) DFs

File size:
The file size (tag 81h) codes the number of bytes to be reserved for the data:

 transparent EF: amount of data

 PIN file: Not applicable, use value ‘0000’. PIN files reserves
always the fixed size of memory.

 RSA key file: No applicable, use value ‘0000’. RSA key file reserves
always the fixed size of memory.

 DF: Number of sub-files.

File descriptor byte:
The available file descriptor (tag 82h) values are:

 FINEID SPECIFICATION 15.3.2004
 FINEID - S1 / v2.1 22(29)

Available file descriptor values

b8 b7 b6 b5 b4 b3 b2 b1 Hex Meaning

0 0 0 0 0 0 0 1 01h Transparent (binary) EF

0 0 0 0 1 0 1 0 0Ah PIN file

0 0 0 1 0 0 0 1 11h RSA key file

0 0 1 1 1 0 0 0 38h DF

Table 44. File descriptor values

File identifier:
The file identifier (tag 83h) codes the identity of EFs and DFs within the current DF.

DF name:
The DF name (tag 84h) codes the Application Identifier (AID) for DFs.

Security attributes:
The security attributes (tag 86h) codes the AC information for the file or directory.
Interpretation of the AC information is file type dependent. The structure and coding of the
AC are defined in the end of this annex.

Life cycle status integer:
The life cycle status integer (LCSI) (tag 8Ah) codes the status of the file.

Coding of LCSI is as follows:

Coding of the Life Cycle Status Integer (LCSI)

b8 b7 b6 b5 b4 b3 b2 b1 Hex Meaning

x x x x - - - - - RFU (currently no effect)

- - - - x x x x - life cycle status information

- - - - 0 0 0 1 'X1' creation state

- - - - 0 1 1 1 'X7' operational state – activated

- - - - other values - RFU

Table 45. LCSI coding

PIN definitions:
The proprietary constructed information field (tag A5h) codes the PIN referencing. This
gives the possibility to locally refer to PINs actually stored in the parent level. This field is
optional if PINs are referenced locally.

It contain one DO, PIN definition (tag C1h). The coding is described below.

Tag = C1h

Length = XXh, where XX is between 00 and 02

Value = ‘ZZh ZZh … ZZh’, where each ZZ is coded as follows

 FINEID SPECIFICATION 15.3.2004
 FINEID - S1 / v2.1 23(29)

Coding of PIN definition byte

b8 b7 b6 b5 b4 b3 b2 B1 Hex Meaning

0 - - - - - - - - – Reference to parent DF PIN definition

1 - - - - - - - - – Reference to this local DF PIN definition

- - x x x x x x - RFU

Table 46. PIN definition byte coding

The first value field is for PIN 1, second for PIN 2.

Access conditions
The main principles of the AC coding are the following:

• There is a proprietary TLV-like coding inside the value field of DO 86h in file header,
expressing a list of AC definitions.

• There is a distinction between simple coding and adaptive coding. In simple coding
most of the commands are covered and can be coded efficiently. In adaptive coding it is
possible to express more complex specifications for commands and also to express AC
for additional commands. The adaptive coding is used to differentiate the access
condition of different modes of PERFORM SECURITY OPERATION (PSO)
command

• Non-existent AC is interpreted as denied access. If conditions for a command is not
specified in the ACI, the command is forbidden (unless the command is of type which
does not require AC check, e.g. PIN verification or file selection). Therefore NEV
conditions need not be explicitly expressed.

• A bitmap expresses a set of commands to which an accompanied condition applies.
Hence several commands that have equal conditions can be expressed in one AC. This
is called the simple coding.

• A byte string (called definition list) expresses the set of commands or command-
parameter combinations to which an accompanied condition applies. Hence AC for any
additional commands, possibly complex parameter-dependent variants also, can be
expressed. This is called the adaptive coding.

The access control interpretation in simple coding format is different for DFs and EFs.
There are also differences between types of EF. This means that the bitmap is used to refer
to different set of commands depending on the type of file.

The first byte in an AC description (one DO of the proprietary TLV-like coded list) codes
what fields are included, the operational mode and the length of the DO value. In context of
TLV-coding it thus codes the (proprietary) T-L part and is hence called the PTL byte.

 FINEID SPECIFICATION 15.3.2004
 FINEID - S1 / v2.1 24(29)

Coding of the proprietary tag-length (PTL) byte of AC DO

b8 b7 b6 b5 b4 b3 b2 b1 Hex Meaning

x - - - - - - - - Coding switch

0 - - - - - - - - – simple coding

1 - - - - - - - - – adaptive coding

- x - - - - - - - Life cycle context indicator

- 0 - - - - - - - – the AC DO applies only in operational state

- 1 - - - - - - - – RFU

- - x - - - - - - RFU

- - - x - - - - - RFU

- - - - x x x x - Length of the entry

Table 47. PTL byte coding

After the PTL byte there comes one or more AM bytes, coding the access mode, i.e. the
commands which the conditions are valid.

Simple coding
If the simple coding is used, there is always one AM byte. The coding of this byte is
defined in tables from Table 48 to Table 51.

Coding of the AM command bitmap for DF (simple coding)

b8 b7 b6 b5 b4 b3 b2 b1 Hex Meaning

x - - - - - - - - RFU

- x - - - - - - - RFU

- - x - - - - - - RFU

- - - x - - - - - RFU

- - - - x - - - - RFU

- - - - - 1 - - - CREATE FILE (DF creation)

- - - - - - 1 - - CREATE FILE (EF creation)

- - - - - - - 1 - DELETE FILE (child)

Table 48. AM command bitmap for DF (simple coding)

 FINEID SPECIFICATION 15.3.2004
 FINEID - S1 / v2.1 25(29)

Coding of the AM command bitmap for binary EF (simple coding)

b8 b7 B6 b5 b4 b3 b2 b1 Hex Meaning

x - - - - - - - - RFU

- 1 - - - - - - - DELETE FILE

- - x - - - - - - RFU

- - - x - - - - - RFU

- - - - x - - - - RFU

- - - - - x - - - RFU

- - - - - - 1 - - UPDATE BINARY, ERASE BINARY

- - - - - - - 1 - READ BINARY

Table 49. AM command bitmap for binary EF (simple coding)

Coding of the AM command bitmap for PIN EF (simple coding)

b8 b7 B6 B5 b4 b3 b2 b1 Hex Meaning

x - - - - - - - - RFU

- 1 - - - - - - - DELETE FILE

- - X - - - - - - RFU

- - - x - - - - - RFU

- - - - x - - - - RFU

- - - - - x - - - RFU

- - - - - - 1 - - PUT DATA

- - - - - - - x - RFU

Table 50. AM command bitmap for PIN EF (simple coding)

 FINEID SPECIFICATION 15.3.2004
 FINEID - S1 / v2.1 26(29)

Coding of the AM command bitmap for RSA EF (simple coding)

b8 b7 b6 b5 b4 b3 b2 b1 Hex Meaning

x - - - - - - - - RFU

- 1 - - - - - - - DELETE FILE

- - 1 - - - - - - PUT DATA (RSA key)

- - - x - - - - - RFU

- - - - x - - - - RFU

- - - - - 1 - - - GENERATE PUBLIC KEY PAIR

- - - - - - 1 - - ERASE BINARY

- - - - - - - 1 - GET DATA (public part of the key)

Table 51. AM command bitmap for RSA EF (simple coding)

Adaptive coding
If the adaptive coding is used, there are always more than one AM byte. The coding of the
first byte – defining what elements are present in the AM list – is defined in Table 52. Bits
b7-b4 define the amount of bytes in one command description, while bits b2-b1 define the
number of command descriptions in the definition list. The number of AM bytes following
the first AM byte is then the product of these values, i.e. (length of command
description)*(number of command descriptions).

It should be noted that in adaptive coding the INS byte is always present in the command
description of the AM entry and is therefore not identified in the AM byte.

Coding of the first byte of Access Mode (AM) of AC (adaptive coding)

b8 b7 b6 b5 b4 B3 b2 b1 Hex Meaning

x - - - - - - - - RFU

- x x x x - - - - Definition list bitmap for adaptive coding

- x - - - - - - - RFU present in command descriptions of definition list

- - 1 - - - - - - P1 present in command descriptions of definition list

- - - 1 - - - - - P2 present in command descriptions of definition list

- - - - x - - - - RFU

- - - - - X - - - RFU

- - - - - - x x - Number of command descriptions in the definition list
(1-2) 1

Table 52. First AM byte coding (adaptive coding)

1 Value 00 is not practical as it includes no command descriptions and such condition can never allow any
command(s) to be executed.

 FINEID SPECIFICATION 15.3.2004
 FINEID - S1 / v2.1 27(29)

SC byte
The AM byte(s) is/are followed by max one SC byte. There can be no SC bytes (ALWAYS
condition) or one SC byte.

Coding of the PIN related Security Condition (SC) of AC DO

b8 b7 b6 b5 b4 B3 b2 b1 Hex Meaning

x - - - - - - - - Reference context

0 - - - - - - - - – RFU

1 - - - - - - - - – local PIN reference

- x x x x - - - - RFU

- - - - - x x x - PIN number (1-2) 2

Table 53. PIN related SC coding

2 Value 000 is not practical as it refers to non-existing PIN and such condition can never be fulfilled.

 FINEID SPECIFICATION 15.3.2004
 FINEID - S1 / v2.1 28(29)

Annex B (Informative): Status conditions

Success conditions

Success conditions

‘61xx’ RES_MORE OK, 'xx' data bytes available for GET RESPONSE

‘9000' RES_OK OK

Warning conditions

Warning conditions

‘6200’ RES_AUTH_WARN Authentication failed

‘6281’ RES_CORRUPT_WARN Part of the returned data may be corrupted

‘6282’ RES_EOF_WARN End of file reached before reading Le bytes

‘6283’ RES_INVALID_WARN Selected file invalidated

‘6284’ RES_FCI_WARN FCI not formatted according to ISO/IEC 7816-4,
subclause 5.1.5

‘6300' RES_GEN_WARN No information given (verification failed)

‘63Cx’ RES_VERIF_WARN Counter (verification failed; x indicates the number of
further allowed retries)

Error conditions

Error conditions

'6400' RES_EXEC_ERR Execution error

'6581' RES_MEM_ERR Memory failure (unsuccessful writing)

‘6600’ RES_SE_ERR The security environment cannot be set or modified, no
further information

‘6700’ RES_LEN_ERR Wrong length

‘6882’ RES_CMD_CLA_ERR SM not supported for the command

‘6981’ RES_FILE_ERR Command incompatible with file structure

'6982’ RES_AC_ERR Security status not satisfied

‘6983’ RES_BLOCKED_ERR Authentication method blocked

‘6984’ RES_REF_INVALID_ERR Referenced data invalidated

'6985' RES_COND_ERR Conditions of use not satisfied

 FINEID SPECIFICATION 15.3.2004
 FINEID - S1 / v2.1 29(29)

‘6986’ RES_NOT_EF_ERR Command not allowed (no current EF)

‘6987’ RES_NO_SM_ERR Expected SM data objects missing

‘6988’ RES_SM_ERR SM data objects incorrect

‘6A81’ RES_FUNC_ERR Function not supported

‘6A82’ RES_NO_FILE_ERR File not found

‘6A83’ RES_NO_RECORD_ERR Record not found

'6A84' RES_FULL_ERR Not enough space in the file

‘6A86’ RES_PAR_ERR Incorrect parameters P1-P2

‘6A87’ RES_PAR_INCONS_ERR Lc inconsistent with P1-P2

'6A88' RES_NO_DATA_ERR Referenced data not found

'6A89' RES_EF_EXISTS_ERR File already exists

'6A8A' RES_DF_EXISTS_ERR DF name already exists

‘6B00’ RES_PAR_ADDR_ERR Wrong parameters (offset outside the EF)

‘6Cxx’ RES_REDO_ERR Wrong length (wrong Le field; ‘xx’ indicates the exact
length)

'6D00' RES_INS_ERR Incorrect INS byte

'6E00' RES_CLA_ERR Incorrect command class (CLA)

'6F00' RES_GEN_ERR No precise diagnosis is given

© Väestörekisterikeskus 2005

