
5.12.2011

FINEID SPECIFICATION

Population Register Centre (VRK)
Certification Authority Services
P.O. Box 70
FIN-00581 Helsinki
Finland
http://www.fineid.fi

FINEID - S1 v2.1
Electronic ID Application

Application Note 1

 FINEID SPECIFICATION 5.12.2011

 FINEID - S1 / Application Note 1 i

Authors
Name Initials Organization E-mail

Antti Partanen AP VRK antti.partanen@vrk.fi

Gemalto GTO Gemalto

Document history
Version Date Editor Changes Status

1.0 5.12.2011 AP Public edition Final

 FINEID SPECIFICATION 5.12.2011

 FINEID - S1 / Application Note 1 ii

Table of Contents
1 Management of data when data size is larger than I/O buffer 1

1.1 CLASS byte coding ... 1

1.2 Command chaining mechanism .. 1

2 Commands supporting command chaining mechanism 3
2.1 GET DATA .. 3

2.2 Applet version ... 5

2.3 PSO: CDS ... 6

2.4 PSO: DECIPHER .. 7

2.5 PSO: HASH ... 8

 FINEID SPECIFICATION 5.12.2011
 FINEID - S1 / Application Note 1 1(10)

EID2048 Applet: Application Note 1

1 Management of data when data size is larger than I/O
buffer

1.1 CLASS byte coding

The class byte coding shall be as below:

If an error occurs during the check of the CLA byte of an APDU command, the applet must
return the status RES_CLA_ERR.

1.2 Command chaining mechanism

If indicated for a command (b5 of the class byte), command chaining shall be supported
according to ISO/IEC 7816 part 4. The commands that support command chaining are
specified later in this application note.

If the data field length to send to the application is more than FFh bytes, the data field must
be sent by blocks of data of FFh bytes or less. Each block is composed by the same
command header (bit 5 of the class byte excepted) and by the block data field.

The CLA bit 5 of the last command of a chain shall be set to 0, whereas the bit 5 for all
preceding chaining commands shall be set to 1.

The command headers are identical in all commands of a chain otherwise the card returns
RES_INS_ERR.

 FINEID SPECIFICATION 5.12.2011
 FINEID - S1 / Application Note 1 2(10)

If the application does not respond with RES_OK to a command of a chain with CLA '1X'
(or ‘9X’), command chaining is aborted.

The command is processed only when all the data field has been received by the
application (intermediate RES_OK only means correct command format)

If the command chaining mechanism is unavailable for a command, the card returns
RES_CLA_ERR.

Example with a data field of 300d (12Ch) bytes:

Data field: M1 to M300

Command header: 00 INS P1 P2

The 2 sent commands could be: (the data field can be truncated “anywhere”)

10h INS P1 P2 F0h M1 .. M240 (The card must return RES_OK)

00h INS P1 P2 3Ch M241 .. M300 (The card processes the command with all the data field)

Retrieval of response data longer than 256 bytes

In the following use cases the application must return up to 256 bytes plain data plus TL
structure so that the total length of the response data exceeds 256 bytes:

• PSO commands if a 2048-bit key is used.
• GET DATA command if a 2048-bit key is used.

This section defines how these cases shall be treated.

The way to retrieve all the outgoing data of such cases consists of a “Retrieval sequence”

• A Retrieval Sequence begins by a command sent to the card,
• A Retrieval Sequence finishes by the last Get Response command sent to retrieve the

last outgoing data.

Byte transmission protocol T = 0

Case 2 command

When a case 2 command shall return more than 256 bytes, only the length Le = ‘00’ shall
be authorized by the card, else the card returns RES_REDO_ERR.

For Le=0, the card returns 256 bytes and a status ‘RES_MORE + xx’ where ‘xx’ represents
the remaining data (‘xx’ = ‘00’ if remaining data length ≥256 bytes). The retrieval sequence
is open.

 FINEID SPECIFICATION 5.12.2011
 FINEID - S1 / Application Note 1 3(10)

The command used to retrieve the remaining data is a Get Response command. For any
subsequent Get Response command:

• If (Le > Licc with Licc < 256), the card returns RES_REDO_ERR + Licc. The
retrieval sequence remains open.

• If Le = Licc and Licc < 256) or (Le=0 and Licc=256) the card returns Licc byte and a
status RES_OK. The retrieval sequence is closed.

• If Le = 00 with Licc > 256, the card returns 256 bytes and the status ’ RES_MORE +
xx’ where ‘xx’ represents the remaining data (‘xx’ = ‘00’ if remaining data length ≥
256 bytes). The retrieval sequence is open.

Case 4 command

After the processing of the case 4 command has been completed without error, if outgoing
data length > 256 bytes, the card returns RES_MORE.

For any subsequent Get Response command the process is the same as for the case 2.

2 Commands supporting command chaining mechanism

2.1 GET DATA

GET DATA command is used for retrieving a public key part of a RSA key pair. The file
from which the key information is being retrieved must have been selected using the
SELECT FILE command.

Note: If retrieving the public part of a 2048 RSA key pair, the chaining mechanism must be
used.

Byte Value

CLA 00h or 10h (if chaining mechanism used)
INS CAh
P1 01h
P2 See Table 2
Lc Empty

Data Empty
Le Number of bytes expected in response

Table 1. GET DATA command APDU

 FINEID SPECIFICATION 5.12.2011
 FINEID - S1 / Application Note 1 4(10)

Coding of the P2

b8 B7 b6 b5 B4 b3 b2 b1 Hex Meaning

0 0 0 0 0 0 0 1 '00' Key info: algorithm identifier, length of modulus and
length of public exponent

0 0 0 0 0 0 1 0 '01' Modulus

0 0 0 0 0 0 1 1 '02' Public exponent

Any other value - RFU

Table 2. Coding of P2 of GET DATA command

GET DATA Response APDU

Data field See Table 4

SW1-SW2 Status bytes

Table 3. GET DATA response APDU

GET DATA Response APDU Data field

Value of P1 Value of P2 Data field coding

01h 00h Value Length

algorithm identifier (‘92 00’ (RSA CRT) is the only currently
supported value)

2

bit length of modulus 2

bit length of public exponent 2

01h 01h Value Length

bit length of modulus 2

Modulus var

01h 02h Value Length

bit length of public exponent 2

Public exponent var

Table 4. Response data field of GET DATA command

 FINEID SPECIFICATION 5.12.2011
 FINEID - S1 / Application Note 1 5(10)

2.2 Applet version

To trace the functional applet version a dedicated TAG is added to the Get Data command.

In case of the couple P1-P2 parameter equals ‘DF’-‘30’, the applet version is returned on 5
bytes according to the following table:

Name Value in ASCII Length in bytes

V : 1 byte ASCII coded for version, RR : 2
bytes ASCII coded for release

‘v‘ | V | ’.’ | RR | ’ 5

Table 5. Applet version

Example of version:
For an applet 1.25, the ASCII value is: ‘v1.25’ and the hexadecimal value is: ’76 31 2E 32 35’.

Success conditions for GET DATA

‘61xx' RES_MORE xx data to available through Get Response command

‘9000' RES_OK OK

Table 6. GET DATA success conditions

Error conditions for GET DATA

'6400' RES_EXEC_ERR Execution aborted (RSA file is deactivated)

'‘6982’ RES_AC_ERR Security status not satisfied

‘6A81’ RES_FUNC_ERR Function not supported (P1-P2 not recognised)

'6A88' RES_NO_DATA_ERR Referenced data not found (current file is DF or EF but not RSA
key file, or RSA file is empty)

‘6Cxx’ RES_REDO_ERR Wrong length (wrong Le field; ‘xx’ indicates the exact
length)

Table 7. GET DATA error conditions

 FINEID SPECIFICATION 5.12.2011
 FINEID - S1 / Application Note 1 6(10)

2.3 PSO: CDS

PERFORM SECURITY OPERATION: COMPUTE DIGITAL SIGNATURE command
computes a digital signature. The private key and algorithm to be used must be specified
using the MANAGE SECURITY ENVIRONMENT command.

The input to the command may be either

- a hash code (e.g. SHA-1 hash value 20 bytes),

- a DigestInfo ASN.1 structure encapsulating the hash code, or

- a full modulus size input buffer (padding done by host application), or

- empty (hash code is calculated by preceding PSO: HASH command(s))

according to the selected algorithm reference value.

Byte Value
CLA 00h or 10h (if chaining mechanism used)
INS 2Ah
P1 9Eh - digital signature data object is returned in response
P2 9Ah – data field contains data to be signed
Lc Length of subsequent data field or empty

Data If algorithm reference in SE = 00h
- Data to be signed (e.g. encapsulated hash code). Padding is done to the full

modulus length by the host application.
If algorithm reference in SE = 02h:
- Hash code encapsulated by the host application into DigestInfo structure. Padding

is done internally by the card.
If algorithm reference in SE = 12h
- Hash code. Card encapsulates the hash into DigestInfo structure and pads it

internally according to PKCS#1 v1.5 into full modulus length. Or
- None. Hash is computed by preceding PSO: HASH command(s).

Le Empty or maximum length of data expected in response

Table 8. PSO: COMPUTE DIGITAL SIGNATURE command APDU

Byte Value
Data Digital signature

SW1-SW2 Status bytes

Table 9. PSO: COMPUTE DIGITAL SIGNATURE response APDU

 FINEID SPECIFICATION 5.12.2011
 FINEID - S1 / Application Note 1 7(10)

Success conditions for PSO: COMPUTE DIGITAL SIGNATURE

‘61xx' RES_MORE xx data to available through Get Response command

‘9000' RES_OK OK

Table 10. PSO: COMPUTE DIGITAL SIGNATURE success conditions

Error conditions for PSO: COMPUTE DIGITAL SIGNATURE

‘6700’ RES_LEN_ERR Wrong length

'6982’ RES_AC_ERR Security status not satisfied

'6984' RES_REF_INVALID_ERR Reference data invalidated (RSA file is deactivated)

'6985' RES_COND_ERR Conditions of use not satisfied (SE for operation not set
correctly or hash not computed)

‘6A81’ RES_FUNC_ERR Function not supported

‘6A86’ RES_PAR_ERR Incorrect parameters P1-P2

‘6F00’ RES_GEN_ERR No precise diagnosis is given

Table 11. PSO: COMPUTE DIGITAL SIGNATURE error conditions

2.4 PSO: DECIPHER

PERFORM SECURITY OPERATION: DECIPHER command decrypts an encrypted
message (cryptogram). The key and algorithm to be used must be specified using the
MANAGE SECURITY ENVIRONMENT command.

Note: If deciphering a message with 2048-bit keys, the chaining mechanism must be used.

Byte Value
CLA 00h or 10h (if chaining mechanism used)
INS 2Ah
P1 80h – decrypted value is returned in response
P2 86h - data field contains padding indicator byte (00h according to ISO/IEC 7816-4)

followed by the cryptogram
(Note! If chaining mechanism is used padding indicator must be included only in the
first command in chain)

Lc Length of subsequent data field
Data 00h (padding indicator byte) || cryptogram

(Note! If chaining mechanism is used padding indicator must be included only in the
first command in chain)

Le Empty or maximum length of data expected in response

 FINEID SPECIFICATION 5.12.2011
 FINEID - S1 / Application Note 1 8(10)

Table 12. PSO: DECIPHER command APDU

Byte Value
Data Decrypted data

SW1-SW2 Status bytes

Table 13. PSO: DECIPHER response APDU

Success conditions for PSO: DECIPHER

‘61xx' RES_MORE xx data to available through Get Response command

‘9000' RES_OK OK

Table 14. PSO: DECIPHER success conditions

Error conditions for PSO: DECIPHER

‘6700’ RES_LEN_ERR Wrong length

'6982’ RES_AC_ERR Security status not satisfied

'6984' RES_REF_INVALID_ERR Reference data invalidated (RSA file is deactivated)

'6985' RES_COND_ERR Conditions of use not satisfied (SE for operation not set
correctly or hash not computed)

‘6A81’ RES_FUNC_ERR Function not supported

‘6A86’ RES_PAR_ERR Incorrect parameters P1-P2

‘6A80’ RES_DATA_ERR Incorrect parameters in data field (padding indicator or
padding of deciphered data invalid)

‘6F00’ RES_GEN_ERR No precise diagnosis is given

Table 15. PSO: DECIPHER error conditions

2.5 PSO: HASH

PERFORM SECURITY OPERATION: HASH command computes a hash sum. The
algorithm to be used must be specified using the MANAGE SECURITY ENVIRONMENT
command (using DST or HT CRDO in the data field). Currently only supported algorithm
is SHA-1. This command supports command chaining mechanism, which utilizes the CLA
value to indicate the end of the command chain. The command chain has CLA = 10h for all
but the last command of the chain, which has CLA = 00h. In chained commands the
commands with CLA = 10h shall carry only data quantities which are multiples of the block
size of the hashing algorithm (64 bytes for SHA-1). The last command of the chain has no
data length limitations. In order to be able to sign or verify the generated hash sum, the
CLA must be 00h (end of chain) in the PSO: HASH command given immediately before
the PSO: COMPUTE DIGITAL SIGNATURE command.

 FINEID SPECIFICATION 5.12.2011
 FINEID - S1 / Application Note 1 9(10)

Byte Value
CLA 00h or 10h (if chaining mechanism used)
INS 2Ah
P1 90h
P2 80h
Lc Length of subsequent data field

Data Data to be hashed
Le Empty or maximum length of data expected in response.

Table 16. PSO: HASH command APDU

The data field may contain zero or more (plain value) bytes to be integrated into the hash
sum (if no bytes are provided, the initial hash state is generated). Length of the data field
shall be multiple of the block size of the hashing algorithm (64 bytes for SHA-1) for all but
the last command of the chain.

For the further processing of the computed hash code the following cases have to be
distinguished:

1. The hash code is stored in the card: the calculated hash code is stored in the card
and available for use in a subsequent command (PSO: COMPUTE DIGITAL
SIGNATURE). In this case the Le field of PSO:HASH command is empty and the
algorithm identifier specified in the previous MSE:SET command (using the DST
CRDO) shall be 12h. In this case it not possible to read out the generated hash sum.

2. The hash code is delivered by the card in the response. The Le field has to be set to
the appropriate length (20 bytes for SHA-1).

Byte Value
Data Empty or calculated hash

Empty: the used MSE:SET command before PSO:HASH contains DST CRDO
Calculated hash: the used MSE:SET command before PSO:HASH contains HT
CRDO

SW1-SW2 Status bytes

Table 17. PSO:HASH response APDU

Success conditions for PSO: HASH

‘9000' RES_OK OK

Table 18. PSO: HASH success conditions

 FINEID SPECIFICATION 5.12.2011
 FINEID - S1 / Application Note 1 10(10)

Error conditions for PSO: HASH

‘6700’ RES_LEN_ERR Wrong length

'6985' RES_COND_ERR Conditions of use not satisfied (SE for operation not set
correctly or hash not computed)

‘6A81’ RES_FUNC_ERR Function not supported

‘6A86’ RES_PAR_ERR Incorrect parameters P1-P2

‘6A80’ RES_DATA_ERR Incorrect parameters in data field (length of DO incorrect)

Table 19. PSO: HASH error conditions

© Väestörekisterikeskus 2011

p21596
Konekirjoitusteksti

