

Application Note
Web Signing

Document version 1.0
02.04.2008

Population Register Centre (VRK)
Certification Authority Services
P.O. Box 70
FIN-00581 Helsinki
Finland
http://www.fineid.fi

Application Note i
Web Signing v 1.0 02.04.2008

Copyright © Population Register Centre 2008

Authors
Name Initials Organization

Timo Ukkonen TUk Fujitsu Services OY

Document history

Version Date Description Editor

1.0 02.04.2008 First edition TUk

Application Note ii
Web Signing v 1.0 02.04.2008

Copyright © Population Register Centre 2008

Contents

1 Introduction .. 1

1.1 Background ... 1
1.2 Content overview .. 1
1.3 Intended audience... 1
1.4 References.. 1
1.5 Terms and Definitions ... 2

2 Architectural overview .. 3

3 The HTTP Signing Module ... 3
3.1 HTTP interface for signing .. 3
3.2 Overview of the HTTP Signing module... 4
3.3 Signing Request.. 5

3.3.1 HTML page for the request ... 5
3.3.2 Signing request XML... 5
3.3.3 Responses .. 7

3.4 Checking if the signing module is running .. 8

4 Security considerations .. 8
4.1 Protocols ... 8
4.2 Man in the middle attacks ... 8

5 Appendixes .. 9
5.1 Appendix A: A Test page for signing... 9

Application Note 1
Web Signing v 1.0 02.04.2008

Copyright © Population Register Centre 2008

1 Introduction

1.1 Background
Population Register Centre (VRK) issues certificates stored on a FINEID smart
card. As a part of the service offering VRK has compatible middleware (card reader
software) available to the holders of a FINEID card.

1.2 Content overview
This document specifies the interface and the functionality of the HTTP signing
module that is a part of the card reader software package. The HTTP signing
module implements a browser and OS independent solution for making non-
repudiation signatures from web applications.
Supported operating systems are:

• Windows (x86-32 and x86-64 processor architectures)
o Windows 2000 (only x86-32)
o Windows XP
o Windows 2003
o Windows Vista

• Linux (x86-32 and x86-64 processor architectures, GNOME user interface)
o SUSE Linux Enterprise Desktop 10
o Redhat Enterprise Linux 5
o Ubuntu 7.10

• MAC OS X (x86-32 processor architecture)
o Version 10.4 (Tiger)
o Version 10.5 (Leopard)

1.3 Intended audience
This document is intended for a technical audience. Understanding of certificates,
smart cards and web application development is needed for best benefit of this
documentation. The purpose of this document is to give system and application
developers the necessary information to plan and implement solutions and services
that utilize web signing within the FINEID context.

1.4 References
It is beneficial for the reader to be familiar with the FINEID specifications that may
be downloaded from http://www.fineid.fi/vrk/fineid/home.nsf/en/documents

• FINEID S1 - Electronic ID Application, v2.1 15.03.2004

• FINEID S1 - Electronic ID Application, v1.12 04.11.2002

• FINEID S2 - VRK (PRC) CA-model and certificate contents, v2.1 05.07.2005

http://www.fineid.fi/vrk/fineid/home.nsf/en/documents

Application Note 2
Web Signing v 1.0 02.04.2008

Copyright © Population Register Centre 2008

• FINEID S2 - VRK (PRC) CA-model and certificate contents, v2.0 24.03.2003

• FINEID S4-1 - FINEID Implementation profile 1 for Finnish Electronic ID
Card, v2.1A 22.10.2004

• FINEID S4-1 - FINEID Implementation profile 1 for Finnish Electronic ID
Card, v1.31 04.11.2002

• FINEID S4-1 - FINEID Implementation profile 1 for Finnish Electronic ID
Card, v1.1 02.12.1999

• FINEID S4-2 - FINEID Implementation profile 2 for Organizational Usage,
v2.1A 22.10.2004

• FINEID S4-2 - FINEID Implementation profile 2 for Organizational Usage,
v1.31A 05.12.2003

• FINEID S4-2 - FINEID Implementation profile 2 for Organizational Usage,
v0.9 01.03.2000

• FINEID S5 - Directory Specification, v2.2 27.3.2007

• Guidelines for Developing Applications for FINEID card, v1.1

1.5 Terms and Definitions

Card reader software A software package for smart card authentication,

signing and encryption.
HTTP Signing module Internal part of card reader software that implements

signing for web applications.
HTTP Hypertext Transfer Protocol. Unsecure communication

protocol used the transfer information in World Wide
Web.

SSL Secure Sockets Layer, A Cryptographic protocol to
provide secure communications on the internet.

HTTPS HTTP over SSL. Secure HTTP communications.

Application Note 3
Web Signing v 1.0 02.04.2008

Copyright © Population Register Centre 2008

2 Architectural overview
Overview of the DigiSign client architecture is following

Card reader software offers three different interfaces for accessing its services:

• OS specific cryptographic API (CryptoAPI)

• PKCS#11

• HTTP interface for signing.

Implementations of these interfaces are based on Fujitsu DigiSign libraries. These
libraries implements common cryptographic operations and access to the smart
card data and operations. There are also some operating system specific modules
which offers access to the smart cards for the operating system and applications
using operating systems API’s.

3 The HTTP Signing Module

3.1 HTTP interface for signing
HTTP Signing module accepts HTTP 1.1 request either via unsecure (http) or
secure (https) channel.
For HTTPS, only supported protocol is SSL 3.0 with RSA authentication and 3DES
encryption (SSL Cipher suite 0x000A, which is widely supported by different
browsers).
HTTP interface accepts two requests.

• HTTP POST containing signing request (chapter 3.3)

• Empty HTTP GET for checking if the module is running (chapter 3.4)
Requests are only accepted from the local workstation.
Data may be signed only with certificates whose key usage is ‘Non-Repudiation’.

Application Note 4
Web Signing v 1.0 02.04.2008

Copyright © Population Register Centre 2008

3.2 Overview of the HTTP Signing module
HTTP Signing module is a local HTTP server on the user’s workstation that
accepts only local request. The request is a HTTP POST request that contains a
HTML form data. Signing request is stored on one hidden field of this form.
The following picture illustrates the co-operation of the components that are related
to the signing process.

The control flow is following:

1. Browser sends a request to the web server by the user request.
2. Web server builds a html form where user can fill in the data to be signed. If

the data source is not the user, operation is started from step 5.
3. User fills the data to the form and presses the submit button of the form.
4. Browser generates a request to the server.
5. Server processes the data and responds with HTTP response that has a

signing request in a HTML form. For more details see next chapter.
6. User confirms the signing. If browser supports scripting this step may be

omitted by implementing a script that posts the form to the signing module.
7. Browser posts the form data to the signing module.
8. Signing module parses the signing request.

If certificates which are capable to non repudiation signatures are not
found, an error page (chapter 3.3.3.2) will be returned. If only one
certificate is found, it will be used automatically. Otherwise a certificate
selection dialog will be displayed and the user must select the certificate.

A signing dialog will be displayed with the data to be signed. For more
information about the data requirements see chapter 3.3.2.

User enters his PIN (or cancels the operation). Data will be signed.

Application Note 5
Web Signing v 1.0 02.04.2008

Copyright © Population Register Centre 2008

9. Signing module composes a response for the request according to the
signing request specification.

10. User submits the result back to the server. If the browser supports
scripting, this phase may be omitted by implementing a script that posts the
form to the server.

11. Browser generates request to the server with the signed data.

3.3 Signing Request

3.3.1 HTML page for the request
Signing request (for step 5 in previous picture) is a HTML form with following
properties

• ‘action’ is “http://127.0.0.1: 53951/Sign” or “https://127.0.0.1: 53952/Sign”

• ‘method’ is “post”

• ‘enctype’ is “multipart/form-data”

• Has a field named ‘SignRequest’ that has the actual signing request as an
XML structure.

• Page encoding must be either UTF-8 or ISO 8859-1

Very simple signing request page could look like following:

<HTML>
 <body>
 <h2>Signing</h2>
 Insert the card to the reader and press OK!
 <form name="Form1" method="post"
 action=”http://127.0.0.1:53951/Sign”
 id="Form1" enctype="multipart/form-data">
 <input type="hidden" name="SignRequest"
 value="[Signing request XML]"/>
 <input type="submit" name="Sign" value="OK"/>
 </form>
 </body>
</HTML>

The hidden input field named ‘SignRequest’ contains the signing request. It was
not included on the example for readability reasons. It is described on the next
chapter.

3.3.2 Signing request XML
The signing request is stored in a XML structure:

http://127.0.0.1:53951/Sign

Application Note 6
Web Signing v 1.0 02.04.2008

Copyright © Population Register Centre 2008

<SignRequest>
 <Data> </Data>
 <ResponsePage></ResponsePage>
 <ErrorPages>
 <Cancel></Cancel>
 <Other></Other>
 </ErrorPages>
</SignRequest>

XML elements are following:

• SignRequest: The root element for the request

• Data: Data to be signed as printable string. Up to 2 MB of data is accepted.
For non-repudiation purposes data should contain only printable
characters.

If data contains non printable characters, data is processed as binary data
and it will not be displayed in the signing dialog. In this case the signature
may not be considered as a non repudiation signature.

• ResponsePage: HTML template for the response after successful signing.

• ErrorPages/Cancel: HTML page for the when user cancelled the signing

• ErrorPages/Other: HTML page for other error cases. With current
implementation this error page is used only when the request structure is
invalid.

Example of the request:

<SignRequest>

 <Data><![CDATA[Data to Sign]]></Data>

 <ResponsePage><![CDATA[
 <html><body><h2>Signature</h2>
 <p>Data was signed successfully,
 press OK to accept it.</p>
 <form name="Result" method="post"
 action="http://some_url">
 <input type="hidden" name=" SignedData " value="%s"/>
 <input type="submit" name="Accept" value="OK"/>
 </form>
 </body></html>
]]></ResponsePage>

 <ErrorPages>
 <Cancel><![CDATA[
 <html><body><h2>Signature</h2>
 <p>Error : Signing was cancelled
 or no card was present</p>
 <form name="SignCancel" method="get"
 action="http://some_url">
 <input type="submit" name="SignCancel"
 value="Back"/>
 </form></body></html>
]]></Cancel>

Application Note 7
Web Signing v 1.0 02.04.2008

Copyright © Population Register Centre 2008

 <Other><![CDATA[
 <html><body><h2>Signature Error</h2>
 <p>Unknown error on signing</p>
 <form name="SignError" method="get"
 action="http://some_url">
 <input type="submit" Name="SignError"
 value="Cancel"/>
 </form></body></html>
]]></Other>
 </ErrorPages>
</SignRequest>

Request must be either ISO-8859-1 or UTF-8 encoded.

3.3.3 Responses

3.3.3.1 Success
The signing request contains a template for the response that is sent to the
browser after successful signing. ‘%s’ is used in the template as place holder for
the signed data. Template page must be designed so that it will send the signed
data back to the server either automatically or by user actions.
The signed data is stored as base64 encoded.
Very simple response page could be like following:

<html>
 <body>
 <h2>Signature</h2>
 <p>Data was signed successfully, press OK to accept it.</p>
 <form name="Result" method="post" action="http://some_url">
 <input type="hidden" name="SignedData" value="%s"/>
 <input type="submit" name="Accept" value="OK"/>
 </form>
 </body>
</html>

In this example, the signed data will be put on the form field named ‘SignedData’.
This example requires user to accept this data, but it is possible to avoid this by
using scripting.

3.3.3.2 Errors
After some error, appropriate error page is selected from the request data. Three
types of error pages are used

• If user cancels the operation or the card is not found, HTML definition for
the error is read from ErrorPages/Cancel–element on the signing request.
This page should define where the user is directed after the error.

• If some other error happens on the signing (should not happen if software
is properly installed), HTML definition for the error page is read from the
ErrorPages/Other–element on the signing request. This page should
define where the user is directed after the error.

Application Note 8
Web Signing v 1.0 02.04.2008

Copyright © Population Register Centre 2008

• If the whole signing request is invalid, a predefined error page will be
displayed. Because the application context is unknown in this case, the
error page only instructs user to use ‘back’ button to return to the previous
page.

Very simple error response page could be like following:

<html>
 <body>
 <h2>Signature</h2>
 <p>Error : Signing was cancelled or no card was present</p>
 <form name="SignCancel" method="get"
 action="http://some_url">
 <input type="submit" name="SignCancel" value="Back"/>
 </form>
 </body>
</html>

3.4 Checking if the signing module is running
Existence of the signing module may be checked by sending empty HTTP GET
request to the same URL as the signing request. Response for the request will be a
1x1 pixel invisible image. Thus -elements ‘onError’ handler may be used the
implement the error handler like in the following example:

<img src="http://127.0.0.1:53951/Sign"
 onError="alert('Signing module is not running')"/>

4 Security considerations

4.1 Protocols
To avoid warnings on the browser, signing requests should be made with the same
protocol (http/https) that is used between server and browser.

4.2 Man in the middle attacks
Man in the middle attacks could be possible between web server and HTTP signing
module in the user’s workstation because the data is not ciphered on the browser.
For more details refer to chapter 3.2. Attack may happen in three different phases:

1. Between steps 3 and 4: Only the user can detect this situation and thus it is
important that the signed data is printable and users are instructed to read
the data in the signing dialog before signing it.

2. Between steps 5 and 7: Both user and server can detect this. Server side
should compare the signed data to the data on the signing request to detect
this.

3. Between steps 9 and 11: Only the server can detect this. In this case the
signature is not valid at all.

Application Note 9
Web Signing v 1.0 02.04.2008

Copyright © Population Register Centre 2008

5 Appendixes

5.1 Appendix A: A Test page for signing
Following HTML page is a test page for testing the signing functionality.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >
<HTML>
 <HEAD><title>SignTest</title></HEAD>
 <body>
 <form name="Form1" method="post"
 action="https://127.0.0.1:53952/Sign" id="Form1"
 enctype="multipart/form-data">
 <textarea style="width:99%;height:550px" name="SignRequest">
<SignRequest>
 <Data><![CDATA[data to sign]]></Data>
 <ResponsePage><![CDATA[
 <!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
 <html>
 <body>
 <h2>Fujitsu mPollux DigiSign Client</h2>
 <p>Signed data:
%s</p>
 </body>
 </html>
]]></ResponsePage>
 <ErrorPages>
 <Cancel><![CDATA[
 <!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
 <html>
 <body>
 <h2>Fujitsu mPollux DigiSign Client Error</h2>
 <p>Signing was cancelled or no card was present</p>
 </body>
 </html>
]]></Cancel>
 <Other><![CDATA[
 <!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
 <html>
 <body>
 <h2>Fujitsu mPollux DigiSign Client Error</h2>
 <p>Unknown error on signing</p>
 </body>
 </html>
]]></Other>
 </ErrorPages>
</SignRequest>
 </textarea>
 <table width="100%" cellpadding="0" cellspacing="0">
 <tr>
 <td height="34" width="180">
 <input type="submit" name="Button3" value="Sign"/>
 <input type="reset" name="3" value="Reset"/>
 </td>
 </tr>
 </table>
 </form>
 <img src="https://127.0.0.1:53952/Sign"
 onError="alert('Signer is not running')"/>
 </body>
</HTML>

	1 Introduction
	1.1 Background
	1.2 Content overview
	1.3 Intended audience
	1.4 References
	1.5 Terms and Definitions

	2 Architectural overview
	3 The HTTP Signing Module
	3.1 HTTP interface for signing
	3.2 Overview of the HTTP Signing module
	3.3 Signing Request
	3.3.1 HTML page for the request
	3.3.2 Signing request XML
	3.3.3 Responses
	3.3.3.1 Success
	3.3.3.2 Errors

	3.4 Checking if the signing module is running

	4 Security considerations
	4.1 Protocols
	4.2 Man in the middle attacks

	5 Appendixes
	5.1 Appendix A: A Test page for signing

